Genetic Diversity of West African Honey Bee (Apis mellifera adansonii Latreille, 1804) from Rural and Urban Areas of Kwara State, North-Central Nigeria
Main Article Content
Abstract
Over one third of the world’s crops– including fruits, vegetables, nuts, spices, and oilseed–require insect pollination, and human reliance on pollination services by honey bees (Apis mellifera) to promote these crops continues to rise due to increasing demands from growing human populations. Identifying the effects of urbanization on genetic diversity on this pollinating insect is important in the field of bioscience. This study aimed to investigate genetic diversity of A. mellifera in Kwara State, Nigeria, using the random amplified polymorphic DNA (RAPD) marker. Thirty honey bees were simultaneously collected from both rural and urban regions in Kwara state, Nigeria. Samples were morphologically identified using standard methods, genomic DNA isolated and amplified using five RAPD primers. Data collected were analysed using PyElph, ARLEQUIN, and GeneAlEx version 6.501 software. The results showed that the DNA fragment sizes produced per primer varied from 200 to 3000 bp. Percentages of polymorphic loci amplified by each primer varied from 17.33 to 33.33%. Analysis of unbiased Nei genetic distance values showed that Agbede (rural) and Adewole (urban) showed the highest value of unbiased genetic distance (0.073), while Amoyo (rural) to Idofian (urban) exhibited the lowest value (0.027). Dendrogram analysis revealed genetically close relationships among the sampled A. mellifera populations. The low level of genetic polymorphisms observed among the honey bee populations in the two regions indicated that there is genetic relatedness among them. This study concluded that RAPD marker is a useful method for understanding population genetic structure of the African honey bees. These results can be used as baseline information for future genetic diversity assessment of honey bees in Nigeria with larger samples. It is therefore recommended that there is a need to safeguard the genetic diversity of A. mellifera to prevent extinction or gradual loss of diversity.
Received: 03 October 2023
Revised: 22 October 2023
Accepted: 16 December 2023
Published: 28 December 2023
Downloads
Article Details
How to Cite
References
1. Snodgrass RE. Anatomy of the honey bee. Cornell Univ Press; 1956.
2. Ji Y. The geographical origin, refugia, and diversification of honey bees (Apis spp.) based on biogeography and niche modeling. Apidologie. 2021;52:367-377. https://doi.org/10.1007/s13592-020-00826-6
3. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 2007. ;274(1608):303-13. https://doi.org/10.1098/rspb.2006.3721
4. Osborne JL, Williams IH, Corbet SA. Bees, pollination and habitat change in the Eur. community. Bee World. 1991;72(3):99-116. https://doi.org/10.1080/0005772X.1991.11099088
5. Banaszak J. Changes in fauna of wild bees in Europe. Pedagogical University; 1995.
6. McKinney ML. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 2008;11:161-176. https://doi.org/10.1007/s11252-007-0045-4
7. Kevan PG. Forest application of the insecticide Fenitrothion and its effect on wild bee pollinators (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium spp.) in Southern New Brunswick, Canada. Biol. Conserv. 1975;7(4):301-309. https://doi.org/10.1016/0006-3207(75)90045-2
8. Kerr JT. Butterfly species richness patterns in Canada: energy, heterogeneity, and the potential consequences of climate change. Conserv Ecol. 2001;5(1). https://doi.org/10.5751/ES-00246-050110
9. Kremen C, Williams NM, Thorp RW. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. 2002;99(26):16812-16816. https://doi.org/10.1073/pnas.262413599
10. Tendero BJT, Gaza HL, Tandang RN. Isozyme analysis of the genetic variation in populations of European honey bee Apis mellifera carrica P. from selected apiaries. Philipp. Entomol. (Philippines). 2007;21(2).159-172.
11. Suazo A, McTiernan R, Hall HG. Differences between African and European honey bees (Apis mellifera L.) in random amplified polymorphic DNA (RAPD). J. Hered. 1998;89(1):32-36. /https://doi.org/10.1093/jhered/89.1.32
12. Qamer S, Al-Abbadi AA, Sajid M, Asad F, Khan MF, Khan NA, Sthanadar AA, Akhtar MN, Mahmoud AH, Mohammed OB. Genetic analysis of honey bee, Apis dorsata populations using random amplified polymorphic DNA (RAPD) markers. J. King Saud Univ-Sci. 2021;33(1):101218. https://doi.org/10.1016/j.jksus.2020.10.015
13. Kekeçoğlu M. Morphometric divergence of Anatolian Honey bees through loss of original traits: A dangerous outcome of Turkish apiculture. Sociobiology. 2018;65(2):232-243. https://doi.org/10.13102/sociobiology.v65i2.1895
14. Ruttner F. Biogeography and taxonomy of honeybees. Springer Science & Business Media; 2013.
15. Awodiran MO, Amoo TE, Kehinde TO. Genetic diversity of four populations of honey bee, Apis mellifera (Linnaeus, 1758) from two vegetation zones in Nigeria. J. Entomol. Nematol. 2021;13(1):1-11. 10.5897/JEN2020.0261
16. Yogesh K, Khan MS. Genetic variability of European honey bee, Apis mellifera in mid hills, plains and tarai region of India. Afr. J. Biotechnol. 2014;13(8):916-925. https://doi.org/10.5897/AJB2013.13142
17. Omar WB, Azmi WA, Abd Razak SB, Mohamad NS, Rahman NSA, Azhamshah NK. A study on the genetic variability of stingless bees in Terengganu by using random amplified polymorphic DNA (RAPD) Markers: A preliminary assessment. Serangga. 2020;25(3), 35-44.
18. Al-Otaibi SA Abd-Alla SM, Fahmi AI. Biochemical studies and mitochondrial DNA fingerprinting of honey bee in Saudi Arabia. Bull. Egyptian J Agric Sci. 2008;59(3):219-230. https://doi.org/10.21608/ejarc.2008.217002
19. Palmer MR, Smith DR, Kaftanoglu O. Brief communication. Turkish Honey bees: genetic variation and evidence for a fourth lineage of Apis mellifera mtDNA. J. Hered. 2000;91(1):42-46. https://doi.org/10.1093/jhered/91.1.42
20. Tunca R, Kence M. Genetic diversity of honey bee (Apis mellifera L.: Hymenoptera: Apidae) populations in Turkey revealed by RAPD markers. Afr. J. Agric. Res. 2011;6(29):6217-6225.https://doi.org/10.5897/AJAR10.386
21. Ikpeme EV, Udensi OU, Ekaluo UB, Kooffreh ME, Okolo CM, Ekpo PB, Ogbonna NC. Unveiling the genetic diversity in Clarias gariepinus (Burchell, 1822) using random amplified polymorphic DNA (RAPD) fingerprinting technique. Asian J. Anim. Sci. 2015;9(5):187-197. https://doi.org/10.3923/ajas.2015.187.197
22. Wenzel A, Grass I, Belavadi VV, Tscharntke T. How urbanization is driving pollinator diversity and pollination - A systematic review. Biol Conserv. 2020;241:108321. https://doi.org/10.1016/j.biocon.2019.108321
23. López-Uribe MM, Soro A, Jha S. Conservation genetics of bees: advances in the application of molecular tools to guide bee pollinator conservation. Conserv. Genet. 2017;18:501-506. https://doi.org/10.1007/s10592-017-0975-1
24. Bouga M, Alaux C, Bienkowska M, Büchler R, Carreck NL, Cauia E, et al. A review of methods for discrimination of honey bee populations as applied to European beekeeping. J. Apic. Res. 2011;50(1):51-84. https://doi.org/10.3896/IBRA.1.50.1.06
25. Susnik S, Kozmus P, Poklukar J Meglič, V. Molecular characterisation of indigenous Apis mellifera carnica in Slovenia. Apidologie. 2004;35(6):623-636. https://doi.org/10.1051/apido:2004061
26. Sheppard WS, Meixner MD. Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie. 2003;34(4):367-375. https://doi.org/10.1051/apido:2003037