Genetic Diversity of West African Honey Bee (Apis ‎mellifera adansonii Latreille, 1804) from Rural and Urban ‎Areas of ‎Kwara State, North-Central Nigeria

Main Article Content

Oluyinka A Iyiola
Olukayode J Adelaja
Rahmat D Aderemi
Ademola E Alaba
Seun F Adejuwon
Olayinka S Yusuf
Lateefat B Bello
Adedayo O Oduola

Abstract





Over one third of the world’s crops– including fruits, vegetables, nuts, spices, and oilseed–‎require insect pollination, and human reliance on ‎pollination services by honey bees (Apismellifera) to promote these crops continues to rise due to increasing demands from growing ‎human ‎populations. Identifying the effects of urbanization on genetic diversity on this ‎pollinating insect is important in the field of bioscience. This study aimed to investigate genetic diversity of A. mellifera in Kwara State, Nigeria, using the random amplified polymorphic DNA (RAPD) marker. ‎Thirty honey bees ‎were simultaneously collected from both rural and urban regions in ‎Kwara state, Nigeria. Samples were morphologically identified using ‎standard methods, ‎genomic DNA isolated and amplified using five RAPD primers. Data collected were ‎analysed using PyElph, ‎ARLEQUIN, and GeneAlEx version 6.501 software. The results ‎showed that the DNA fragment sizes produced per primer varied from 200 to ‎‎3000 bp. Percentages of polymorphic loci amplified by each primer varied from 17.33 to 33.33%. ‎Analysis of unbiased Nei genetic ‎distance values showed that Agbede (rural) and Adewole ‎‎(urban) showed the highest value of unbiased genetic distance (0.073), while ‎Amoyo ‎‎(rural) to Idofian (urban) exhibited the lowest value (0.027). Dendrogram analysis revealed ‎genetically close relationships among the sampled ‎A. mellifera‎ populations. The low level of genetic ‎polymorphisms observed among the honey bee populations in the two ‎regions ‎indicated that there is genetic relatedness among them. This study concluded that RAPD ‎marker is a useful method for ‎understanding population genetic structure of the African honey ‎bees. These results can be used as baseline information for future genetic ‎diversity ‎assessment of honey bees in Nigeria with larger samples. It is therefore recommended that ‎there is a need to safeguard the genetic ‎diversity of A. mellifera to prevent extinction or ‎gradual loss of diversity‎‎‎.


 


 


 





Downloads

Download data is not yet available.

Article Details

How to Cite
Genetic Diversity of West African Honey Bee (Apis ‎mellifera adansonii Latreille, 1804) from Rural and Urban ‎Areas of ‎Kwara State, North-Central Nigeria. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 110-116. https://doi.org/10.30539/47nm3z31
Section
Articles

How to Cite

Genetic Diversity of West African Honey Bee (Apis ‎mellifera adansonii Latreille, 1804) from Rural and Urban ‎Areas of ‎Kwara State, North-Central Nigeria. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 110-116. https://doi.org/10.30539/47nm3z31

References

‎1.‎ Snodgrass RE. Anatomy of the honey bee. Cornell Univ Press; 1956.‎

‎2.‎ Ji Y. The geographical origin, refugia, and diversification of honey ‎bees (Apis spp.) based on biogeography and niche modeling. ‎Apidologie. 2021;52:367-377. https://doi.org/10.1007/s13592-020-00826-6

‎3.‎ Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, ‎Kremen C, et al. Importance of pollinators in changing landscapes ‎‎for world crops. Proc. R. Soc. B. 2007. ;274(1608):303-13. ‎‎https://doi.org/10.1098/rspb.2006.3721

‎4.‎ Osborne JL, Williams IH, Corbet SA. Bees, pollination and habitat ‎change in the Eur. community. Bee World. 1991;72(3):99-116. https://doi.org/10.1080/0005772X.1991.11099088

‎5.‎ Banaszak J. Changes in fauna of wild bees in Europe. Pedagogical ‎University; 1995.‎

‎6.‎ McKinney ML. Effects of urbanization on species richness: a review ‎of plants and animals. Urban Ecosyst. 2008;11:161-176. https://doi.org/10.1007/s11252-007-0045-4

‎7.‎ Kevan PG. Forest application of the insecticide Fenitrothion and its ‎effect on wild bee pollinators (Hymenoptera: Apoidea) of lowbush ‎‎blueberries (Vaccinium spp.) in Southern New Brunswick, Canada. ‎Biol. Conserv. 1975;7(4):301-309. https://doi.org/10.1016/0006-3207(75)90045-2

‎8.‎ Kerr JT. Butterfly species richness patterns in Canada: energy, ‎heterogeneity, and the potential consequences of climate change. ‎Conserv ‎Ecol. 2001;5(1). https://doi.org/10.5751/ES-00246-050110

‎9.‎ Kremen C, Williams NM, Thorp RW. Crop pollination from native ‎bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. ‎‎‎2002;99(26):16812-16816. https://doi.org/10.1073/pnas.262413599

‎10.‎ Tendero BJT, Gaza HL, Tandang RN. Isozyme analysis of the genetic ‎variation in populations of European honey bee Apis mellifera‎ ‎carrica ‎P. from selected apiaries. Philipp. Entomol. (Philippines). ‎‎2007;21(2).‎159-172.‎

‎11.‎ Suazo A, McTiernan R, Hall HG. Differences between African and ‎European honey bees (Apis mellifera‎ L.) in random amplified ‎‎polymorphic DNA (RAPD). J. Hered. 1998;89(1):32-36. ‎‎/https://doi.org/10.1093/jhered/89.1.32‎

‎12.‎ Qamer S, Al-Abbadi AA, Sajid M, Asad F, Khan MF, Khan NA, ‎Sthanadar AA, Akhtar MN, Mahmoud AH, Mohammed OB. Genetic ‎analysis of ‎honey bee, Apis dorsata populations using random ‎amplified polymorphic DNA (RAPD) markers. J. King Saud Univ-Sci. ‎‎‎2021;33(1):101218. https://doi.org/10.1016/j.jksus.2020.10.015

‎13.‎ Kekeçoğlu M. Morphometric divergence of Anatolian Honey bees ‎through loss of original traits: A dangerous outcome of Turkish ‎‎apiculture. Sociobiology. 2018;65(2):232-243. https://doi.org/10.13102/sociobiology.v65i2.1895

‎14.‎ Ruttner F. Biogeography and taxonomy of honeybees. Springer ‎Science & Business Media; 2013.‎

‎15.‎ Awodiran MO, Amoo TE, Kehinde TO. Genetic diversity of four ‎populations of honey bee, Apis mellifera‎ (Linnaeus, 1758) from two ‎‎vegetation zones in Nigeria. J. Entomol. Nematol. 2021;13(1):1-11.‎ ‎‎10.5897/JEN2020.0261‎

‎16.‎ Yogesh K, Khan MS. Genetic variability of European honey bee, Apis ‎mellifera‎‎ in mid hills, plains and tarai region of India. Afr. J. ‎‎Biotechnol. 2014;13(8):916-925. https://doi.org/10.5897/AJB2013.13142

‎17.‎ Omar WB, Azmi WA, Abd Razak SB, Mohamad NS, Rahman NSA, ‎Azhamshah NK. A study on the genetic variability of stingless bees ‎in Terengganu by using random amplified polymorphic DNA ‎‎(RAPD) Markers: A preliminary assessment. Serangga. 2020;25(3), ‎‎35-44.‎

‎18.‎ Al-Otaibi SA Abd-Alla SM, Fahmi AI. Biochemical studies and ‎mitochondrial DNA fingerprinting of honey bee in Saudi Arabia. ‎Bull. Egyptian J Agric Sci. 2008;59(3):219-230. https://doi.org/10.21608/ejarc.2008.217002

‎19.‎ Palmer MR, Smith DR, Kaftanoglu O. Brief communication. Turkish ‎Honey bees: genetic variation and evidence for a fourth lineage of ‎‎Apis mellifera‎ mtDNA. J. Hered. 2000;91(1):42-46. ‎‎https://doi.org/10.1093/jhered/91.1.42

‎20.‎ Tunca R, Kence M. Genetic diversity of honey bee (Apis mellifera‎ L.: ‎Hymenoptera: Apidae) populations in Turkey revealed by RAPD ‎‎markers. Afr. J. Agric. Res. 2011;6(29):6217-6225.https://doi.org/10.5897/AJAR10.386

‎21.‎ Ikpeme EV, Udensi OU, Ekaluo UB, Kooffreh ME, Okolo CM, Ekpo PB, ‎Ogbonna NC. Unveiling the genetic diversity in Clarias gariepinus ‎‎‎(Burchell, 1822) using random amplified polymorphic DNA (RAPD) ‎fingerprinting technique. Asian J. Anim. Sci. 2015;9(5):187-197. ‎‎https://doi.org/10.3923/ajas.2015.187.197

‎22.‎ Wenzel A, Grass I, Belavadi VV, Tscharntke T. How urbanization is ‎driving pollinator diversity and pollination - A systematic review. ‎Biol ‎Conserv. 2020;241:108321. https://doi.org/10.1016/j.biocon.2019.108321

‎23.‎ López-Uribe MM, Soro A, Jha S. Conservation genetics of bees: ‎advances in the application of molecular tools to guide bee ‎pollinator ‎conservation. Conserv. Genet. 2017;18:501-506. ‎‎https://doi.org/10.1007/s10592-017-0975-1

‎24.‎ Bouga M, Alaux C, Bienkowska M, Büchler R, Carreck NL, Cauia E, et ‎al. A review of methods for discrimination of honey bee ‎‎populations as applied to European beekeeping. J. Apic. Res. ‎‎2011;50(1):51-84. https://doi.org/10.3896/IBRA.1.50.1.06

‎25.‎ Susnik S, Kozmus P, Poklukar J Meglič, V. Molecular ‎characterisation of indigenous Apis mellifera‎ carnica in Slovenia. ‎Apidologie. ‎‎2004;35(6):623-636. https://doi.org/10.1051/apido:2004061

‎26.‎ Sheppard WS, Meixner MD. Apis mellifera‎ pomonella, a new honey ‎bee subspecies from Central Asia. Apidologie. 2003;34(4):367-375. https://doi.org/10.1051/apido:2003037

Similar Articles

You may also start an advanced similarity search for this article.