Antibiotic Susceptibility and Molecular Detection of Pseudomonas aeruginosa Isolated from Bovine Mastitis

Main Article Content

Hala S.R. AL-Taee
Ikram A.A. Al-Samarraae
Hazim I. AL-Ahmed

Abstract

This study aimed to isolate Pseudomonas aeruginosa from cattle (bovine) milk with mastitis to characterize its antimicrobial susceptibility against some antibiotics, and to identify aminoglycoside acetyltransferase (aac-3-Ib) gene.A total of 100 bovine milk samples were collected randomly from different local cow farms at districts of Wasit governorate, Iraq. Six P. aeruginosa isolates were obtained using bacterial culture method and further identified by Analytical Profile Index (API-20E). The antibiotic sensitivity test was performed by disc diffusion methods. Among the 5 antibiotics used, the highest resistance (100%) was found with Nalidixic acid andtetracycline, follow by gentamicin (50%) and the lowest resistance rate (16.6%, and 33.3%) was to the ciprofloxacin and cephalothin respectively. PCR was performed for all the gentamicin resistant isolates that be among the aminoglycoside family. The where the frequency of aac(3)-Ib gene have product (530bp) was to 3 of P. aeruginosa isolates. From the finding of present study we concluded that P.aeruginosa thatisolated from mastitic bovinehave been developed resistance against aminoglycosides through presence of aac(3)-Ibgene and the ciprofloxacin and cephalothin can be taken as good choice of treatment

Downloads

Download data is not yet available.

Article Details

How to Cite
Antibiotic Susceptibility and Molecular Detection of Pseudomonas aeruginosa Isolated from Bovine Mastitis. (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 77-85. https://doi.org/10.30539/iraqijvm.v43i2.536
Section
Articles

How to Cite

Antibiotic Susceptibility and Molecular Detection of Pseudomonas aeruginosa Isolated from Bovine Mastitis. (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 77-85. https://doi.org/10.30539/iraqijvm.v43i2.536

References

Milivojevic, D.; Neven, S.; Strahinja, M.; Aleksandar, P.; Ivana, M.; Branka, V.; Lidija, S. and Jasmina, N. R. (2018). Biofilm-forming Ability and infection potential of Pseudomonas aeruginosa Strains isolated from animals and humans. Pathogens and Disease, 76: 1-3.

Streeter, K.; Katouli, M. (2016). Pseudomonas aeruginosa: A Review of Their Pathogenesis and Prevalence in Clinical Settings and the Environment. Infect Epidemiol Med., 2:25-32.

Haenni M; Hocquet, D.; Ponsin, C. (2015). Population Structure and Antimicrobial Susceptibility of Pseudomonas aeruginosa from Animal Infections in France. BMC Vet Res., 11.

Kidd, T. J.; Gibson, J. S.; Moss, S. (2011). Clonal Complex Pseudomonas aeruginosa in horses. Vet Microbiol. 149: 508-12.

Monnet, D. L.; Mackenzie, F. M.; Lopezlozano, J. M.; Beyaert, A.; Camacho, M.; Wilson, R.; Stuart, D.; Gould, I. M. (2004). Antimicrobial Drug use and methicillin-resistant Staphylococcus aureus Aberdeen, 1996-2000. Emerg. infect. Dis., 10 (8): 1432-41.

Corti, S.; Sicher, D.; Regli, W.; Stephan, R. (2003). Current Data on Antibiotic Resistance of the Most Important Bovine Mastitis pathogens in Switzeerland. Schweiz. Arch. Tierheilkd, 145 (12): 571-575.

Livermore, D. M. (2002). Multiple Mechani-sms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clin. Infect. Dis., 34: 634 - 640.

Poole, K. (2004). Efflux-Mediated Multi-resistance in Gram-Negative Bacteria. Clin. Microbiol. Infect., 10: 12-26.

Zeng, L. and S. Jin. (2003). aph(3)-IIb, a Gene Encoding an Aminoglycoside Modifying Enzyme, Is Under the Positive Control of Surrogate Regulator HpaA. Antimicrob. Agents Chemother., 47: 3867-3876.

Alvarez, M. and M. C. Mendoza. (1993). Molecular Epidemiology of Two Genes Encoding 3-N-Aminoglycoside Acetyltrans-ferases AAC(3)I and AAC(3)II among Gram negative bacteria from a Spanish hospital. Eur. J. Epidemiol., 9: 650-657.

Hachler, H.; Santanam, P. and Kayser, F. H. (1996). Sequence and characterization of a novel chromosomal aminoglycoside phosph-orrtransferase gene, aph(3)-IIb, in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 40: 1254-1256.

O Hara, C. M. and Miller, J. M. (2003). Evaluation of the Vitek 2 ID-GNB assay for identification of members of the family Enterobacteriaceae and other non-enteric gram-negative bacilli and comparison with the Vitek GNI card. J. Clin. Microbiol., 41: 2096-2101.

Murray, P. R.; Baron, E. J.; Jorgensen, J. H.; Landry, M. L.; Pfaller, M. A. (2007). Antibacterial susceptibility tests: dilution and disk diffusion methods. In: Manual of clinical microbiology. 9th ed. Washington, DC: American Society for Microbiology, 1152-72.

Clinical and Laboratory Standards Institute (CLSI). (2012). Performance Standards for Antimicrobial Susceptability Testing. 22nd Informational Supplement. CLSI document M100-S22, Wayne, P. A.: Clinical and Laboratory Standards Institute. 32 (3).

Lee, R. S.; Carl, P. S.; George, H. M.; Roberta, S. H.; and Karen, J. SH.(1995). Cloning and Characterization of a 3-N-Aminoglycoside cetyltransferase Gene, aac(3)-Ib, from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy., 39 (8): 1790-1796.

Shaheen, M.; Tantary, H. A. and Nabi, S. U. (2016). A Treatise on Bovine Mastitis: Disease and Disease Economics, Etiological Basis, Risk Factors, Impact on Human Health, Therapeutic Management, Prevention and Control Strategy. J Adv Dairy Res., 4: 1.

Azhar, A. N. (2017). Molecular Detection of virulence factor genes in Pseudomonas aeruginosa isolated from human and animals in Diwaniya province. Kufa Journal For Veterinary Medical Sciences, 8: 218-226.

Abdul-Kareem, K. and AL-Hassab, H. (2014). Detection of some virulence factors of pseudomonas aeruginosa isolated from raw milk and soft cheese. vet. medicine collage - Baghdad University. M. V. Sc. Thesis. P: 98.

Amel, E.; Ghazy, Mohamed, A; lkatsha, A.; Samy, A. Kh. and Mohamed, E. N.(2015). Phenotypic and Genotypic Characterization of Pseudomonas aeruginosa Isolated from Bovine Mastitis. Alexandria Journal of Veterinary Sciences., 44: 80-85

Heleili, N.; Ayachi, A.; Melizi, M.; Kassah, A.L. and Mamache, B. (2012). Prevalence of sub-clinical bovine mastitis and the in vitro sensitivity of bacterial isolates in Batna governorate, East of Algeria. J. Anim. Sci. Adv., 2 (6): 576-582.

Viswakarma, P. (2008). Studies on Pre-valence, Diagnosis, Therapy and Control of Mastitis in Buffaloes. M. V. Sc. Thesis. Indira Gandhi Agricultural University, Raipur, Chhattisgarh.

Malinowski, E.; Lassa, H.; Klossowska, A.; Smulski, S.; Markiewcz, H. and Kaczma-rowki, H. (2006). Etiological agents of dairy cow’s mastitis in western part of Poland. Pol. J. Vet. Sci.,9 (3): 191-194.

Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Fitz Patrick, E. S.; Fanning, S. and Hartigan, P.J. (2011) Veterinary Microbiology and Microbial Diseases. 2nd ed. Blackwell Publishing Ltd., Ames, IA. Pp: 287-290.

Singh, R.; Sharma, N.; Soodan, J.S. and Sudhan, N. A. (2005). Etiology and sensitivity of bacterial isolates from sub-clinical mastitis in cattle from Jammu region. SKUAST J. Res., 4 (2): 223-224.

Banerjee, S.; Batabyal, K.; Joardar, S.; Isore, N. D; Dey, P.; Samanta, S.; Samanta, T. and Murmu, K. S. (2017). Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India. Veterinary World,10 (7): 738-742

Miller, G. H.; Sabatelli, F. J.; Naples, L.; Hare, R. S. and Shaw, K. J. (1995). The most frequently occurring aminoglycoside resistance mechanisms combined results ofsurveys in eight regions of the world. J. Chemother. 7 (2): 17-30.

Andrade, S. S.; Jones, R. N.; Gales, A. C. and Sader, H. S. (2003). Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997–2001). J. Antimicrob. Chemother., 52:140-141.

Souli, M.; Galani, I.; Giamarellou, H. (2008). Emergence of Extensively Drug-resistant and Pandrug-resistant Gram-negative Bacilli in Europe. Euro Surveill., 13 (47): 19045.

Rodloff, A.C.; Leclercq, R.; Debbia, E.A; Canton, R.; Oppenheim, B. A. and Dowzicky, M. J. (2008). Comparative Analysis of Antimicrobial Susceptibility among Organisms from France, Germany, Italy, Spain and the UK as Part of the Tigecycline Evaluation and Surveillance Trial. Clin Microbiol Infect., 14 (4): 307 -14.

Hassan, H. N. and Ghassan, K. H. I. (2019). Detection of some aminoglycoside resis-tance gene in Pseudomonas aeruginosa culturedfrom mastitic milk cows. Kufa Journal For Veterinary Medical Sciences, 7 (2): 26-30.

Shaw, K. J; Rather, P. N; Hare, R. S. and Miller, G. H. (1993). Molecular genetics aminoglycoside resistance genes and familial relationship of the aminoglycoside modifying enzymes. Microbiol Rev., 57: 138-63.

Aires, J. R.; Ko¨hler, T.; Nikaido, H. and Plesiat, P. (1999). Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglyco-sides. Antimicrob. Agents Chemother., 43: 2624-2628.

Similar Articles

You may also start an advanced similarity search for this article.