The Effectiveness of β-glucan in the Treatment of Caprine Mastitis Induced by Candida albicans

Main Article Content

Saddam H Mahmoud
Shaimaa N Yassein

Abstract





This study evaluated the efficacy of β-glucan, extracted from Candida albicans isolated from mastitic goat milk using an alkaline-acidic method, in treating C. albicans-induced mastitis. Twenty lactating goats (2–4 years old, 25–30 kg) were randomly divided into five groups (Group I–Group V), with each group consisting of four goats. Sixteen goats were intramammarily inoculated with 1.2 × 10⁷ yeast/2 mL of virulent C. albicans. The groups were as follows: Group I (negative control, uninfected), Group II (positive control, infected but untreated), Group III (treated with Nystatin, 200,000 units/half udder/day intramammary for 7 days), Group IV (treated with β-glucan, 5 mg/mL/half udder, administered intramammary every 48 h for three doses), and Group V (treated with a combination of β-glucan and Nystatin; β-glucan was administered as in Group IV, followed 2 h later by Nystatin, 200,000 units/half udder/day for 7 days). Clinical signs, milk quality (California Mastitis Test and fungal cultures), and serum levels of IL-6 and IFN-γ were assessed on days 0, 5, 10, 20, 30, and 40 post-inoculation. The results showed that the positive control group exhibited persistent mastitis symptoms throughout the study. Goats treated with β-glucan alone (Group IV) demonstrated significant symptom reduction and fungal elimination by day 15. The combination therapy group (Group V) achieved similar improvements by day 25. Serum IL-6 and IFN-γ levels were significantly elevated in the positive control group, while the β-glucan-treated group showed a substantial reduction in these inflammatory markers, indicating its potential as a standalone antifungal therapy. The Nystatin group (Group III) and the combination group (Group V) also exhibited reduced cytokine levels, although these were higher than those observed in the β-glucan and negative control groups. This study confirms the potential of β-glucan as an effective treatment for C. albicans-induced mastitis in goats. Its ability to lower inflammatory cytokine levels and eliminate fungal infections highlights its promise as a therapeutic option, particularly in combination with Nystatin, for managing fungal mastitis‎‎‎.





Downloads

Download data is not yet available.

Article Details

How to Cite
The Effectiveness of β-glucan in the Treatment of Caprine Mastitis Induced by Candida albicans. (2024). The Iraqi Journal of Veterinary Medicine, 48(2), 81-87. https://doi.org/10.30539/zkxy6e07
Section
Articles

How to Cite

The Effectiveness of β-glucan in the Treatment of Caprine Mastitis Induced by Candida albicans. (2024). The Iraqi Journal of Veterinary Medicine, 48(2), 81-87. https://doi.org/10.30539/zkxy6e07

References

‎ Ezzat Alnakip M, Quintela-Baluja M, Böhme K, Fernández-No I, ‎Caamaño-Antelo S, Calo-Mata P, et al. The immunology of mammary ‎gland of dairy ruminants between healthy and inflammatory ‎conditions. J Vet Med. 2014;2014:659801.

https://doi.org/10.1155/2014/659801

‎2.‎ Navamniraj NK, Sivasabari K, Ankitha IJ, Deepika K, Anjali MR, Akhil ‎PR, et al. Beneficial impacts of goat milk on the nutritional status ‎and general well-being of human beings: anecdotal evidence. J Expe ‎Biol Agric Sci. 2023;11(1):1-15. ‎

https://doi.org/10.18006/2023.11(1).1.15

‎3.‎ Yanuartono Y, Nururrozi, A. Indarjulianto S, Raharjo S, ‎Purnamaningsih H, Haribowo DN. Mycotic mastitis in ruminants. ‎Indonesian J Anim Sci. 2019;29(2):109-130. ‎https://doi.org/10.21776/ub.jiip.2019.029.02.03

‎4.‎ Jameel FAR, Yassein SN. Virulence potential of Penicillium ‎chrysogenum isolated from subclinical bovine mastitis. Iraqi J Sci. ‎‎2021;62(7):2131-2142. https://doi.org/10.24996/ijs.2021.62.7.2

‎5.‎ Hizlisoy H, Onmaz NE, Serhat Al, Karadal F, Yildirim Y, Gonulalan Z, ‎et al. Clonal diversity and antifungal susceptibility of Candida spp. ‎recovered from cow milk. Mljekarstvo. 2020;70(1):40-49. https://doi.org/10.15567/mljekarstvo.2020.0104

‎6.‎ Machado GP. Mastitis in small ruminants. Anim Husb Dairy Vet Sci. ‎‎2018;2(4):1-9. https://doi.org/10.15761/AHDVS.1000144

‎7.‎ Pengkumsri N, Sivamaruthi BS, Sirllun S, Peerajan S, Kesika P, ‎Chaiyasut K, et al. Extraction of β-glucan from Saccharomyces ‎cerevisiae: Comparison of different extraction methods and in vivo ‎assessment of immunomodulatory effect in mice. Food Sci. Technol. ‎Campinas. 2017:37(1):124-130. https://doi.org/10.1590/1678-457x.10716

‎8.‎ Walachowski S, Breyne K, Secher T, Cougoule C, Guzylack-Piriou L, ‎Meyer E, et al. Oral supplementation with yeast β-glucans improves ‎the resolution of Escherichia coli-associated inflammatory ‎responses independently of monocyte/macrophage immune ‎training. Front Immunol. 2022;13:1086413. ‎https://doi.org/10.3389/fimmu.2022.1086413

‎9.‎ Vetvicka V, Teplyakova TV, Shintyapina AB, Korolenko TA. Effects ‎of medicinal fungi-derived β-glucan on tumor progression. J Fungi ‎‎(Basel). 2021;7(4):250. https://doi.org/10.3390/jof7040250

‎10.‎ Vlassopoulou M, Yannakoulia M, Pletsa V, Zervakis GI, Kyriacou A. ‎Effects of fungal beta-glucans on health - a systematic review of ‎randomized controlled trials. Food Funct. 2021;12(8):3366-3380. ‎https://doi.org/10.1039/D1FO00122A

‎11.‎ Hofer M, Pospisil M. Modulation of animal and human ‎hematopoiesis by β-glucans: A review. Molecules. ‎‎2011;16(9):7969-7979.

https://doi.org/10.3390/molecules16097969

‎12.‎ Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-‎Glucans from fungi: Biological and health-promoting potential in ‎the COVID-19 pandemic era. Nutrients. 2021;13(11):3960. ‎https://doi.org/10.3390/nu13113960

‎13.‎ Camilli G, Tabouret G, Quintin J. The complexity of fungal β-Glucan ‎in health and disease: Effects on the mononuclear phagocyte ‎system. Front. Immunol. 2018;9:673. ‎https://doi.org/10.3389/fimmu.2018.00673

‎14.‎ Buddle BM, Pulford HD, Ralston M. Protective Effect of glucan ‎against experimentally induced staphylococcal mastitis in ewes. ‎Vet Microbiol. 1988;16(1):67-76. https://doi.org/10.1016/0378-1135(88)90127-7

‎15.‎ Waller KP, Colditz IG. Effect of intramammary infusion of β-1,3-‎glucan or interleukin-2 on leukocyte subpopulations in mammary ‎glands of sheep. Am J Vet Res. 1999;60(6):703-707. ‎https://doi.org/10.2460/ajvr.1999.60.06.703

‎16.‎ Inchaisri C, Waller KP, Johannisson A. Studies on the modulation of ‎leucocyte subpopulations and immunoglobulins following ‎intramammary infusion of beta 1,3-glucan into the bovine udder ‎during the dry period. J Vet Med B Infect Dis Vet Public Health. ‎‎2000;47(5):373-86. ‎https://doi.org/10.1046/j.1439-0450.2000.00357.x

‎17.‎ Mahmoud SH, Yassein SN. Prevalence of mycotic mastitis and ‎evaluation of some virulence potential of Candida albicans isolated ‎from mastitic goats. Adv. Anim. Vet. Sci. 2023;11(9):1417-1427. ‎https://doi.org/10.17582/journal.aavs/2023/11.9.1417.1427

‎18.‎ Bacha U, Nasir M, Iqbal S, Anjum, AA. Nutraceutical, anti-‎inflammatory and immune modulatory effects of β-glucan isolated ‎from yeast. Biomed Res Int. 2017;2017:8972678‎. https://doi.org/10.1155/2017/8972678

‎19.‎ Persson Waller K, Grönlund U, Johannisson A. Intramammary ‎infusion of β1,3-glucan for prevention and treatment of ‎Staphylococcus aureus mastitis. J Vet Med B Infect Dis Vet Public ‎Health. 2003;50(3):121-127.

https://doi.org/10.1046/j.1439-0450.2003.00630.x

‎20.‎ Singh P, Sood N, Gupta PP, Jand SK, Banga HS. Experimental candidal ‎mastitis in goats: Clinical, haematological, biochemical and ‎sequential pathological studies. Mycopathologia. 1997;140(2):89-‎‎97. ‎https://doi.org/10.1023/A:1006869422876

‎21.‎ Guhad A, Jensen HE, Hau J. Experimental murine mycotic mastitis: a ‎sensitive and lenient model for studies of antifungal chemotherapy. ‎FEMS Immunol Med Microbiol. 1999;26(2):125-130. ‎https://doi.org/10.1111/j.1574-695X.1999.tb01379.x

‎22.‎ Washinton WJ, Stephan A, Willium J, Elmer K, Gail W. Konemans ‎color Atlas and Textbook of diagnostic Microbiology; 6th ed. Jones ‎& Bartlett Learning Philadelphia, 2006. p.1535‎

‎23.‎ Mohammed, R.I. and Al-Samarraae IAA. Investigating the effect of ‎three antigens of Citrobacter freundii on rabbit's immune response. ‎Iraqi J Vet Med. 2021;45(1):56-62. ‎https://doi.org/10.30539/ijvm.v45i1.1043

‎24.‎ Hussein DK, Al-Jowari SA, Rahmah AM. Determination of the Level ‎of IL-6 and Vaspin in Hyperthyroid Patients Treated with ‎Carbimazole. Iraqi J Sci. 2022;63(5):1909-1917. https://doi.org/10.24996/ijs.2022.63.5.5

‎25.‎ SAS. Statistical Analysis System, User's Guide. Statistical. Version ‎‎9.6th ed. SAS. Inst. Inc. Cary. N.C. USA. 2018.‎

‎26.‎ Mohanty BK, Rath PK, Panda S K, Mishra BP. Pathomorphological ‎studies of caprine mastitic udder. J Entomolo Zool Stud. ‎‎2019;7(5):1208-1212. http://w.w.w.entomoljournal.Com.‎

‎27.‎ Al-Dujaily AH, Mahmood AK. The effectiveness of biogenic silver ‎nanoparticles in the treatment of caprine mastitis induced by ‎Staphylococcus aureus. Iraqi J Vet Sci. 2021;35(III):73-78. ‎‎https://doi.org/10.33899/ijvs.2021.131415.1946

‎28.‎ Jand SK, Dhillon SS. Mycotic mastitis produced experimentally in ‎goats. Mycosis. 1975;18(8):363-366. ‎ ‎

https://doi.org/10.1111/j.1439-0507.1975.tb03616.x

‎29.‎ Spika M. Candida tropicalis as the cause of bovine mastitis. Vet ‎Glasn. 1957;11:747-751.‎

‎30.‎ Monga DP, Kalra DS. Observations on experimental mycotic ‎mastitis in goats. Mykosen 1972;15:199-205.

https://doi.org/10.1111/j.1439-0507.1972.tb02484.x

‎31.‎ Verma PC, Kalra DS. Experimental studies on mastitis in goats ‎caused by Candida albicans extracts. Indian J Vet Pathol. 1983;7:21-‎‎25.‎

‎32.‎ Ma JL, Wang JF, Wang K, Wu CX, Lai T, Zhu YH. Changes in ‎micromineral, magnesium, cytokine, and cortisol concentrations in ‎blood of dairy goats following intramammary inoculation with ‎Staphylococcus aureus. J Dairy Sci. 2007;90(10):4679-4683.

https://doi.org/10.3168/jds.2006-868

‎33.‎ Singh V, Ram M, Roy BK, Singh KK. Effect of induced mastitis on ‎disposition kinetics of gatifloxacin following intravenous ‎administration in goats. J Bioanal Biomed. 2010;2(2):44-47. ‎https://doi.org/10.4172/1948-593X.1000020

‎34.‎ Alanni FAJ. Study The Effect of Beta-glucan Extracted from Candida ‎albicans and Saccharomyces cerevisiae on The Immune Response ‎against Penicillium chrysogenum Isolated from Bovine Mastitis in ‎Mice [dissertation]. Baghdad, Iraq: University of Baghdad; 2021.‎

‎35.‎ Mahmoud Amer EM, Saber SH, Abo Markeb A, Elkhawaga AA, ‎Mekhemer IMA, Zohri ANA, et al., Enhancement of β-Glucan ‎Biological Activity Using a Modified Acid-Base Extraction Method ‎from Saccharomyces cerevisiae. Molecules. 2021;26,2113.

https://doi.org/10.3390/molecules26082113

‎36.‎ Pedroso M. Application of beta-1,3-glucan to prevent shipping fever ‎in imported heifers. Arch Med Res. 1994;25(2):181‎

‎37.‎ Małaczewska JO, Wójcik R, Jung L, Siwicki AK. Effect of Biolex β-HP ‎on selected parameters of specific and non-specific humoral and ‎cellular immunity in rats. Bull Vet Inst Pulawy. 2010;54:75-80.‎

‎38.‎ Jameel, F.A. and Yassein, Sh.N. Effect β glucan extracted from Candida ‎albicans on pathological changes produced by Penicillium ‎chrysogenum infection in mice Iraqi Journal of Veterinary Sciences., ‎‎2023:37(4):907-914. https://doi.org/10.33899/ijvs.2023.137775.2728

‎39.‎ Saud HM, Alaubydi MA. Effect of clinical Klebsiella pneumonia ‎extracted melanin on some immune aspects in mice. Iraqi J Agric Sci. ‎‎2019:50(1):241-247. https://doi.org/10.36103/ijas.v5011.301. ‎

‎40.‎ Al-Attaby, AK., Al-Lami, MQD. Role of Calcium-Regulating ‎Hormones, Adipocytokines and Renal Function Test in The ‎Progress of Type 2 Diabetes Mellitus in A Sample of Iraqi Patients. ‎Iraqi Journal of Agricultural Sciences-1029.,2019:50(1):343-352 ‎https://doi.org/10.36103/ijas.v50i1.300

‎41.‎ Sellati TJ, Sahay B. Cells of Innate Immunity: Mechanisms of ‎Activation. In: McManus LM, Mitchell RN, editors. Pathobiology of ‎Human Disease. San Diego, CA, USA: Academic Press; 2014. p. 258-‎‎274. ‎https://doi.org/10.1016/B978-0-12-386456-7.01804-9

‎42.‎ Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: ‎Structure, pathophysiological roles and inhibitors. Bioorg Med ‎Chem. 2020;28(5):115327. ‎https://doi.org/10.1016/j.bmc.2020.115327

‎43.‎ Murphey ED, Herndon DN, Sherwood ER. Gamma Interferon does ‎not enhance clearance of Pseudomonas aeruginosa but does amplify ‎a proinflammatory response in a murine model of post. Septic ‎Immunosuppression. Infect Immun. 2004:72(12):6892-6901.

https://doi.org/10.1128/IAI.72.12.6892-6901.2004

‎44.‎ Akramienė D, Kondrotas A, Didžiapetrienė J, Kėvelaitis E. Effects of ‎ß-glucans on the immune system. Medicina. 2007;43(8):597-606. ‎

https://doi.org/10.3390/medicina43080076

‎45.‎ Huang J, Wu C, Tang S, Zhou P, Deng J, Zhang Z, et al. Chiral Active β-‎Glucan Nanoparticles for Synergistic Delivery of Doxorubicin and ‎Immune Potentiation. Int J Nanomedicine. 2020:15:5083-5095. ‎ ‎https://doi.org/10.2147/IJN.S258145

‎46.‎ Senoglu N, Yuzbasioglu MF, Aral M, Ezberci M, Belge Kurutas E, ‎Bulbuloglu E, et al., Protective Effects of N-Acetylcysteine and β-‎Glucan Pretreatment on Oxidative Stress in Cecal Ligation and ‎Puncture Model of Sepsis. J Invest Surg. 2008:21:237-243,

https://doi.org/10.1080/08941930802180136

‎47.‎ Sonck E. Immunomodulation of Porcine Leukocytes and Dendritic ‎Cells by (1,3) β-Glucans [Doctoral dissertation]. Ghent University; ‎‎2011. http://hdl.handle.net/1854/LU-1989184

‎48.‎ Mahdi NR, Yassein SN, Khalaf JM. Protective effect of cytosine - ‎phosphate-guanosine oligodeoxy nucleotide against experimental ‎mastitis induced by Cryptococcus neoformans infection in goats. ‎Iraqi J Vet Med. 2017;40(2):113-123.

https://doi.org/10.30539/iraqijvm.v40i2.122

‎49.‎ Touma MM, Jassim HS, Hyyawi SM, Nayyef HJ, Abbas AH. The Role ‎of IFN-γ and TNF-α In Experimental Mastitis. Iraqi J Agric Sci. ‎‎2021:52(1):121-128. https://doi.org/10.36103/ijas.v52i1.1242

Similar Articles

You may also start an advanced similarity search for this article.