This is a preview and has not been published.

Feed Additives used in Nutrition and Improve the Poultry Performance and Health: A review

Authors

Keywords:

antibiotics‎, feed additives‎, poultry nutrition‎, prebiotics‎, poultry health

Abstract

     An approach to increase the efficiency of the poultry industry is to supplement the feed additives in diets to enhance growth rates, optimize egg production, mitigate disease prevalence, and improve feed utilization. Primary constituents of poultry diets incorporate cereal grains, predominantly corn, along with wheat, barley, sorghum, and other grains. Additionally, a predominant protein source e.g. soybean meal is utilized, although alternative protein sources, both of animal and plant origin, exist. Beyond these components, the feed nutritional quality is influenced by factors such as presentation, microbial contamination, the presence of antinutritional substances, digestibility, palatability, and intestinal health. A variety of feed additives are available to address these considerations. Particularly, the commercialization of feed additives requires approval through rigorous scientific evaluation, ensuring their lack of adverse effects on human and animal health, as well as the environment. Several feed ingredients formulated in chicken diets show antinutritional properties, limiting their applicability. To fulfill energy requirements and enhance poultry health, it is necessary to develop commercially viable alternatives to existing feed resources, emphasizing safety and cost-effectiveness. This review observed diverse strategies for the utilization of feed additives within conventional poultry production systems, aiming to enhance growth, optimize egg production efficiency, and prevent disease outbreaks.

Author Biography

Risma Rizkia Nurdianti, Institute of Animal Nutrition and Rangeland Management in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany

Institute of Animal Nutrition and Rangeland Management in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany

References

‎1.‎ Abdulalwahhab BN, Al-Tememy ATD, Abbas BA. Study of the ‎Location of Birds inside the Breeding Hall of Broilers Rose 308 and ‎Its Effect on Environmental Conditions Using a Documented Data ‎System. Plant Arch. 2020; 20 (1): 1013-1020. ‎‏ ‏http://www.plantarchives.org/SPECIAL%20ISSUE%2020-‎‎1/1013-1020%20(18).pdf‎

‎2.‎ Abbas, BA, Jasim, AA, Bander, LK. Comparing Different laboratory ‎Methods for Measuring the Feed Pellet Durability. Kufa J Agr Sci. ‎‎2024; 16(3): 50-60.‎‏‎ ‎‏ ‏https://doi.org/10.36077/kjas/2024/v16i3.11401‎

‎3.‎ Mandey JS, Sompie FN. Phytogenic feed additives as an alternative ‎to antibiotic growth promoters in poultry nutrition. Adv. Stud. ‎‎21st Century Anim. Nutr. 2021; 8, 19-32.‎‏ ‏‎ ‎https://www.intechopen.com/chapters/77836‎

‎4.‎ Ayalew H, Zhang H, Wang J, Wu, S, Qiu K, Qi G. et al. Potential feed ‎additives as antibiotic alternatives in broiler production. Front Vet ‎Sci. 2022; 9: 1-15.‎‏‎ https://doi.org/10.3389/fvets.2022.916473‎

‎5.‎ Yaman H, Ulukanli Z, Elmali M, Unal Y. The effect of a fermented ‎probiotic, the Kefir, on intestinal flora of poultry domesticated ‎geese (Anser anser). Rev Med Vet (Toulouse). 2006; 157(7): 379-‎‎386. https://api.semanticscholar.org/CorpusID:21340786‎

‎6.‎ Ye M, Wei C, Khalid A, Hu Q, Yang R, Dai B, et al. Effect of Bacillus ‎velezensis to substitute in-feed antibiotics on the production, ‎blood biochemistry and egg quality indices of laying hens. BMC Vet ‎Res. 2020; 16(1): 1-8.‎‏‎ https://doi.org/10.1186/s12917-020-‎‎02570-6‎

‎7.‎ Volostnova AN, Yakimov AV, Yakimov OA, Salyakhov AS, Frolov GS. ‎Production technology of livestock and poultry products using ‎environmentally safe feed additives. IOP Conf Ser Earth Environ Sci. ‎‎2022; 978(1): 1-6. https://doi.org/10.1088/1755-‎‎1315/978/1/012023‎

‎8.‎ Diba F, Alam F, Talukder AA. Screening of acetic acid producing ‎microorganisms from decomposed fruits for vinegar production. ‎Adv Microbiol. 2015; 5(5): 291-297.‎‏ ‏‎ ‎http://dx.doi.org/10.4236/aim.2015.55028‎

‎9.‎ Al-Khalaifah HS. Benefits of probiotics and/or prebiotics for ‎antibiotic-reduced poultry. Poult Sci. 2018; 97(11): 3807-3815. ‎‏ ‏‏ ‏https://doi.org/10.3382/ps/pey160‎

‎10.‎ Al-Gharawi JK, Al-Helali AH, Al-Zamili IF. Effect of using different ‎ways to provide the iraq probitic on some productive traits of ‎broiler. Plant Arch. 2018; 18(1): 1102-1108.‎‏‎ ‎‏ ‏http://plantarchives.org/PDF%20181/1102-‎‎1108%20(PA3%204185).pdf‎

‎11.‎ Buryakov N, Traynev I, Zaikina A, Buryakova M, Shaaban, M, ‎Zagarin A. The effects of the extract of sweet chestnut in diets for ‎broilers on the digestibility of dietary nutrients and productive ‎performance. In International Scientific Conference Fundamental ‎and Applied Scientific Research in the Development of Agriculture ‎in the Far East. 2021; 354: 778-784. https://doi.org/10.1007/978-‎‎3-030-91405-9_86‎

‎12.‎ Pirgozliev V, Rose SP, Ivanova S. Feed additives in poultry nutrition. ‎Bulg J Agric Sci. (2019); 25(1): 8-11.‎‏ ‏‎ ‎https://www.agrojournal.org/25/01s-02.pdf‎

‎13.‎ Jones FT, Ricke SC. Observations on the history of the development ‎of antimicrobials and their use in poultry feeds. Poult Sci. 2003; ‎‎82(4): 613-617.‎‏‎ https://doi.org/10.1093/ps/82.4.613‎

‎14.‎ Landoni MF, Albarellos G. The use of antimicrobial agents in broiler ‎poultry s. Vet J, 2015; 205(1): 21-27.‎‏ ‏‎ ‎https://doi.org/10.1016/j.tvjl.2015.04.016‎

‎15.‎ Hailegebreal G, Tanga BM, Woldegiorgis W, Sulayeman M, Sori T. ‎Epidemiological investigation of morbidity and mortality of ‎improved breeds of poultry s in small holder poultry farms in ‎selected districts of Sidama Region, Ethiopia. Heliyon. 2022; 8(8): 1-‎‎7.‎‏‎ ‎‏ ‏https://doi.org/10.1016/j.heliyon.2022.e10074‎

‎16.‎ Kujlu R, Mahdavianpour M, Ghanbari F. Multi-route human health ‎risk assessment from trihalomethanes in drinking and non-‎drinking water in Abadan, Iran. Environ Sci Pollut Res Int. 2020; ‎‎27(34): 42621-42630.‎‏‎ https://doi.org/10.1007/s11356-020-‎‎09990-9‎

‎17.‎ Nwobodo DC, Ugwu MC, Oliseloke Anie C, Al‐Ouqaili MT, Chinedu ‎Ikem J, Victor Chigozie U. et al. Antibiotic resistance: The challenges ‎and some emerging strategies for tackling a global menace. J Clin Lab ‎Anal. 2022; 36(9):1-10.‎‏‎ https://doi.org/10.1002/jcla.24655‎

‎18.‎ Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial ‎resistance in bacterial poultry pathogens: a review. Front Vet Sci. ‎‎2017; 4: 1-17. https://doi.org/10.3389/fvets.2017.00126‎

‎19.‎ Alsadwi AM, Ibrahim MM, Shah KN, Cannon CL, Byrd JA, Caldwell D, ‎et al. In Vitro Efficacy of Silver Carbene Complexes, SCC1 and SCC22, ‎Against Some Enteric Animal Pathogens. Iraqi J. Vet. Med. 2024; ‎‎48(1):1-8.‎‏‎ https://doi.org/10.30539/yvbbhj22‎

‎20.‎ Chattopadhyay MK. Use of antibiotics as feed additives: a burning ‎question. Front Microbiol. 2014; 5: 1-3.‎‏ ‏‎ ‎https://doi.org/10.3389/fmicb.2014.00334‎‏

‎21.‎ Gadde U, Kim WH, Oh ST, Lillehoj HS. Alternatives to antibiotics for ‎maximizing growth performance and feed efficiency in poultry: a ‎review. Anim Health Res Rev. 2017; 18(1): 26-45.‎‏‎ ‎‏ ‏https://doi.org/10.1017/S1466252316000207‎

‎22.‎ Akhil, AM, Abdaljaleel R, Leyva-Jimenez H, Ibrahim M, Gardner K, et ‎al. Evaluation Effect of Silver Acetate on Performance and ‎Clostridium Perfringens-Induced Necrotic Enteritis in Broiler ‎Chickens. Arch Anim Poult Sci. 2019; 1(2): 1-7.‎‏ ‏‏ ‏‎ ‎https://juniperpublishers.com/aaps/pdf/AAPS.MS.ID.555556.pdf

‎23.‎ Rahman MRT, Fliss I, Biron E. Insights in the development and uses ‎of alternatives to antibiotic growth promoters in poultry and ‎swine production. Antibiotics. 2022; 11(6): 1-29.‎‏ ‏‎ ‎https://doi.org/10.3390/antibiotics11060766‎

‎24.‎ Levy SB. The challenge of antibiotic resistance. Scientific American. ‎‎1998; 278(3): 46-53. ‎‏ ‏https://doi.org/10.1038/scientificamerican0398-46‎

‎25.‎ Dibner J, Richards J. Antibiotic growth promoters in agriculture: ‎history and mode of action. Poultry science, 2005; 84(4): 634-643. ‎https://doi.org/10.1093/ps/84.4.634‎

‎26.‎ Hughes P, Heritage J. Antibiotic growth-promoters in food animals. ‎FAO Anim Prod Heal Pap. 2004; 25: 129-152.‎‏ ‏‎ ‎https://www.fao.org/4/y5159e/y5159e08.htm

‎27.‎ Czaplewski L, Bax R, Clokie, M, Dawson M, Fairhead H, Fischetti, VA, ‎et al. Alternatives to antibiotics- a pipeline portfolio review. Lancet ‎Infect Dis. 2016; 16(2): 239-251.‎‏‎ https://doi.org/10.1016/s1473-‎‎3099(15)00466-1

‎28.‎ Patrick GL. An introduction to medicinal chemistry. Oxford ‎university press.‎‏ 2023: 924‏‎ p. ‎‏ ‏https://global.oup.com/academic/product/an-introduction-to-‎medicinal-chemistry-9780198866664‎

‎29.‎ Khattab WO, Elderea HB, Salem EG, Gomaa NF. Transmission of ‎administered amoxicillin drug residues from laying poultry to their ‎commercial eggs. J Egypt Public Health Assoc. 2010; 85(5-6): 297-‎‎316.‎‏‎ https://pubmed.ncbi.nlm.nih.gov/22054104/

‎30.‎ El-Kholy H, Kemppainen BW. Levamisole residues in poultry ‎tissues and eggs. Poult Sci. 2005; 84(1): 9-13.‎‏‎ ‎‏ ‏https://doi.org/10.1093/ps/84.1.9‎

‎31.‎ Roberts MC. Tetracycline resistance determinants: mechanisms of ‎action, regulation of expression, genetic mobility, and distribution. ‎FEMS Microbiol Rev. 1996; 19(1): 1-24.‎‏‎ ‎‏ ‏https://doi.org/10.1111/j.1574-6976.1996.tb00251.x‎

‎32.‎ Thaker M, Spanogiannopoulos P, Wright G D. The tetracycline ‎resistome. Cell Mol Life Sci. 2010; 67: 419-431.‎‏ ‏‎ ‎https://doi.org/10.1007/s00018-009-0172-6‎

‎33.‎ Center for Veterinary Medicine. Summary report on antimicrobials ‎sold or distributed for use in food-producing animals. U.S. Food and ‎Drug Administration, Silver Spring, MD. 2018.‎‏ ‏‎ ‎https://www.fda.gov/media/133411/download

‎34.‎ Zakeri B, Wright GD. Chemical biology of tetracycline antibiotics. ‎Biochem Cell Biol. 2008; 86(2): 124-136.‎‏‎ ‎‏ ‏https://doi.org/10.1139/O08-002‎

‎35.‎ Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash ‎A, et al. Disrupting the ArcA regulatory network amplifies the ‎fitness cost of tetracycline resistance in Escherichia coli. Msystems. ‎‎2023; 8(1): 1-21.‎‏‎ https://doi.org/10.1128/msystems.00904-22‎

‎36.‎ Vass M, Hruska K, Franek M. Nitrofuran antibiotics: a review on the ‎application, prohibition and residual analysis. Vet Med. 2008; ‎‎53(9): 469-500.‎‏‎ https://doi.org/10.17221/1979-VETMED

‎37.‎ Majalekar PP, Shirote, PJ. Fluoroquinolones: blessings or curses. ‎Curr Drug Targets. 2020; 21(13): 1354-1370.‎‏ ‏‎ ‎https://doi.org/10.2174/1389450121666200621193355‎

‎38.‎ Dagur P, Ghosh M, Patra A. Aminoglycoside antibiotics. In Medicinal ‎Chemistry of Chemotherapeutic Agents. 2023; 135-155.‎‏ ‏‎ ‎https://doi.org/10.1016/B978-0-323-90575-6.00009-0‎

‎39.‎ Mehtabuddin M, Mian AA, Ahmad T, Nadeem S, Tanveer ZI, Arshad J. ‎Sulfonamide residues determination in commercial poultry meat ‎and eggs.‎‏‎ J Anim Plant Sci. 2012; 22(2): 473-478.‎‏ ‏‎ ‎https://www.thejaps.org.pk/Volume/2012/22-2/default.php‎

‎40.‎ Vázquez-Laslop N, Mankin AS. How macrolide antibiotics work. ‎Trends Biochem Sci. 2018; 43(9): 668-684.‎‏‎ ‎‏ ‏https://doi.org/10.1016/j.tibs.2018.06.011waaaaa

‎41.‎ Dinos GP. The macrolide antibiotic renaissance. Br J Pharmacol. ‎‎2017; 174(18): 2967-2983.‎‏‎ https://doi.org/10.1111/bph.13936‎

‎42.‎ Matijašić M, Kos VM, Nujić K, Čužić S, Padovan J, Kragol G, et al. ‎Fluorescently labeled macrolides as a tool for monitoring cellular ‎and tissue distribution of azithromycin. Pharmacol Res. 2012; ‎‎66(4): 332-342.‎‏‎ https://doi.org/10.1016/j.phrs.2012.06.001‎

‎43.‎ Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an ‎overview. Cold Spring Harbor perspectives in medicine. 2016; 6(6): ‎‎1-19.‎‏‎ ‎https://perspectivesinmedicine.cshlp.org/content/6/6/a027029.full

‎44.‎ Mazalli MR, Maldonado RR, Aguiar-Oliveira E. Screening and ‎Analysis of Probiotic Actinobacteria in Poultry Farming. Met Acti. ‎‎2022: 563-569.‎‏‎ https://doi.org/10.1007/978-1-0716-1728-1_84‎

‎45.‎ Clarke L, Fodey TL, Crooks SR, Moloney M, O'Mahony J, Delahaut P, ‎et al. A review of coccidiostats and the analysis of their residues in ‎meat and other food. Meat Sci. 2014; 97(3): 358-374.‎‏ ‏‎ ‎https://doi.org/10.1016/j.meatsci.2014.01.004‎

‎46.‎ Martins RR, Silva LJ, Pereira AM, Esteves, A., Duarte SC, Pena A. ‎Coccidiostats and poultry: A comprehensive review and current ‎legislation. Foods. 2022; 11(18): 1-20.‎‏‎ ‎‏ ‏https://doi.org/10.3390/foods11182738‎

‎47.‎ Sharma SK, Galav V, Rathore PS. Amphenicols: Dilemma of Use and ‎Abuse in Poultry. In Handbook on Antimicrobial Resistance: ‎Current Status, Trends in Detection and Mitigation Measures, ‎Singapore: Springer Nature Singapore. 2023; 201-214.‎‏‎ ‎‏ ‏‏ ‏https://doi.org/10.1007/978-981-19-9279-7_12‎

‎48.‎ Trif E, Cerbu C, Olah D, Zăblău SD, Spînu M., Potârniche, et al. Old ‎antibiotics can learn new ways: a systematic review of florfenicol ‎use in veterinary medicine and future perspectives using ‎nanotechnology. Animals. 2023; 13(10): 1-19.‎‏‎ ‎‏ ‏https://doi.org/10.3390/ani13101695‎

‎49.‎ EFSA Panel on Contaminants in the Food Chain (CONTAM). ‎Scientific Opinion on Chloramphenicol in food and feed. EFSA J. ‎‎2014; 12(11): 1-146. https://doi.org/10.2903/j.efsa.2014.3907‎

‎50.‎ Bacanh M, Başaran N. Importance of antibiotic residues in animal ‎food. Food Cosmet Toxicol. 2019; 125: 462-466.‎‏‎ ‎‏ ‏https://doi.org/10.1016/j.fct.2019.01.033

‎51.‎ Kantati YT. Détection des résidus d’antibiotiques dans les viandes ‎de bovins prélevées aux abattoirs de Dakar. Mémoire de master ‎qualité des aliments de l’homme, spécialité: Produits d’origine ‎animale, Ecole Inter-états des Sciences et Médecine vétérinaires ‎‎(EISMV), Dakar. 2011: 1-49.‎‏‎ ‎‏ ‏https://beep.ird.fr/greenstone/collect/eismv/index/assoc/MEM1‎‎1-15.dir/MEM11-15.pdf

‎52.‎ Gassner B, Wuethrich A. Pharmacokinetic and toxicological aspects ‎of the medication of beef‐type calves with an oral formulation of ‎chloramphenicol palmitate. J Vet Pharmacol Ther. 1994; 17(4): ‎‎279-283.‎‏‎ https://doi.org/10.1111/j.1365-2885.1994.tb00246.x

‎53.‎ Ventola CL. The antibiotic resistance crisis: part 1: causes and ‎threats. P T. 2015; 40(4): 277-283. ‎‏ ‏https://pubmed.ncbi.nlm.nih.gov/25859123/

‎54.‎ Barlow M, Hall BG. Origin and evolution of the AmpC β-lactamases ‎of Citrobacter freundii. Antimicrob Agents Chemother. 2002; 46(5): ‎‎1190-1198.‎‏‎ https://doi.org/10.1128/AAC.46.5.1190-1198.2002

‎55.‎ Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. ‎Bull World Health Organ. 2004; 82(5): 346-353.‎‏‎ ‎‏ ‏https://pubmed.ncbi.nlm.nih.gov/15298225/‎

‎56.‎ Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al., ‎Hoekstra RM. The global burden of nontyphoidal Salmonella ‎gastroenteritis. Clin Infect Dis. 2010; 50(6): 882-889.‎‏‎ ‎‏ ‏‏ ‏https://doi.org/10.1086/650733‎

‎57.‎ Allerberger F, Liesegang A, Grif K, Khaschabi D, Prager R, Danzl J, et ‎al. Occurrence of Salmonella enterica serovar Dublin in Austria. ‎Wien Med Wochenschr. 2003; 153(7‐8): 148-152.‎‏‎ ‎‏ ‏https://doi.org/10.1046/j.1563-258X.2003.03015.x

‎58.‎ Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. ‎Campylobacter spp. as a foodborne pathogen: a review. Front ‎Microbiol. 2011; 2, 1-12.‎‏‎ ‎https://doi.org/10.3389/fmicb.2011.00200

‎59.‎ Engberg J, Aarestrup FM, Taylor DE, Gerner-Smidt P, Nachamkin I. ‎Quinolone and macrolide resistance in Campylobacter jejuni and C. ‎coli: resistance mechanisms and trends in human isolates. Emerg ‎Infect Dis. 2001; 7(1): 24-34. ‎‏ ‏https://doi.org/10.3201%2Feid0701.010104

‎60.‎ Endtz HP, Ruijs GJ, van Klingeren, B, Jansen WH, van der Reyden T, ‎Mouton RP. Quinolone resistance in Campylobacter isolated from ‎man and poultry following the introduction of fluoroquinolones in ‎veterinary medicine. J Antimicrob Chemother. 1991; 27(2): 199-‎‎208.‎‏‎ https://doi.org/10.1093/jac/27.2.199

‎61.‎ Ramos S, Silva V, Dapkevicius MDLE, Caniça M, Tejedor-Junco MT, ‎Igrejas G, et al. Escherichia coli as commensal and pathogenic ‎bacteria among food-producing animals: Health implications of ‎extended spectrum β-lactamase (ESBL) production. Animals. 2020; ‎‎10(12): 1-15.‎‏‎ https://doi.org/10.3390/ani10122239

‎62.‎ Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in ‎Europe: an overview. Int J Environ Res Public Health. 2013; 10(12): ‎‎6235-6254. ‎‏https://doi.org/10.3390/ijerph10126235

‎63.‎ Lazarus B, Paterson DL, Mollinger JL, Rogers BA. Do human ‎extraintestinal Escherichia coli infections resistant to expanded-‎spectrum cephalosporins originate from food-producing animals? ‎A systematic review. Clin Infect Dis. 2015; 60(3): 439-452.‎‏‎ ‎‏ ‏https://doi.org/10.1093/cid/ciu785

‎64.‎ Wegener HC, Aarestrup FM, Jensen LB, Hammerum AM, Bager F. ‎Use of antimicrobial growth promoters in food animals and ‎Enterococcus faecium resistance to therapeutic antimicrobial ‎drugs in Europe. Emerg Infect Dis. 1999; 5(3): 329-335. ‎‏ ‏‏ ‏https://doi.org/10.3201/eid0503.990303

‎65.‎ Edmond MB, Ober JF, Dawson JD, Weinbaum DL, Wenzel RP. ‎Vancomycin-resistant enterococcal bacteremia: natural history ‎and attributable mortality. Clin Infect Dis. 1996; 23(6): 1234-1239. ‎‏ ‏‏ ‏https://doi.org/10.1093/clinids/23.6.1234‎‏‎

‎66.‎ Wise R. An overview of the specialist advisory committee on ‎antimicrobial resistance (SACAR). J Antimicrob Chemother. 2007; ‎‎60(suppl. 1): 5-7.‎‏‎ https://doi.org/10.1093/jac/dkm151

‎67.‎ Sabir PS, Mirza RA, Hamedmin, AE, Abdulla HS. Efficacy of ‎peppermint (Mentha pipreitae), basil (Ocimum basilicum) and their ‎combination on growth performance and meat quality of broilers. ‎Diyala Agr Sci J. 2023; 15(1): 26-33. ‎‏ ‏https://doi.org/10.52951/dasj.23150104

‎68.‎ Grave K, Jensen VF, Odensvik K, Wierup M, Bangen M. Usage of ‎veterinary therapeutic antimicrobials in Denmark, Norway and ‎Sweden following termination of antimicrobial growth promoter ‎use. Prev Vet Med. 2006; 75(1-2): 123-132.‎‏‎ ‎‏ ‏https://doi.org/10.1016/j.prevetmed.2006.02.003

‎69.‎ Anadón A, Martínez-Larrañaga MR, Ares I, Martínez MA. Regulatory ‎aspects for the drugs and chemicals used in food-producing animals ‎in the European Union. Vet Toxicol (Third Edition). 2018: 103-131. ‎https://doi.org/10.1016/B978-0-12-811410-0.00007-6

‎70.‎ Faugeron J, Oguey C. Flavours: versatile sensory additives. ‎Pancosma. Reproduced from Feed Compounder. 2020: 1-2. ‎‏ ‏‏ ‏https://www.pancosma.com/flavours-versatile-sensory-‎additives-2/

‎71.‎ Breithaupt DE. Modern application of xanthophylls in animal ‎feeding-a review. Trends Food Sci Technol. 2007; 18(10): 501-506.‎‏‎ ‎‏ ‏‏ ‏https://doi.org/10.1016/j.tifs.2007.04.009‎

‎72.‎ Breithaupt DE. Xanthophylls in Poultry Feeding. In: Britton G, ‎Liaaen-Jensen S, Pfander H. (eds) Carotenoids. Carotenoids. 2008; 4: ‎‎1-2.‎‏ ‏‎ https://doi.org/10.1007/978-3-7643-7499-0_13‎

‎73.‎ Baker R, Günther, C. The role of carotenoids in consumer choice ‎and the likely benefits from their inclusion into products for human ‎consumption. Trends Food Sci Technol. 2004; 15(10): 484-488.‎‏‎ ‎https://doi.org/10.1016/j.tifs.2004.04.0094‎

‎74.‎ Santos TTD, Baal SCS, Lee SA, Silva VFD, Favaro C, da Silva VF. ‎Immune profile of broilers between hatch and 9 days of age fed ‎diets with different betaine and fibre concentrations. J Worlds Poult ‎Res. 2020; 10(2): 397-406. ‎‏‎ ‎https://dx.doi.org/10.36380/jwpr.2020.47

‎75.‎ Arisandi R, Hamid A, Saleh E, Zain WN, Sholikin MM, Prihambodo ‎TR, et al. The Effects of Mixed Vitamins, Minerals, Fatty Acids and ‎Amino Acids Supplementation into Drinking Water on Broiler ‎Poultry s’ Performance and Carcass Traits. J Worlds Poult Res. ‎‎2021; 11(1): 47-52.‎‏‎ https://dx.doi.org/10.36380/jwpr.2021.7

‎76.‎ El-Senousey HK, Chen B, Wang JY, Atta AM, Mohamed FR, Nie QH. ‎Effects of dietary vitamin C, vitamin E, and alpha-lipoic acid ‎supplementation on the antioxidant defense system and immune-‎related gene expression in broilers exposed to oxidative stress by ‎dexamethasone. Poult sci. 2018; 97(1): 30-38.‎‏‎ ‎https://doi.org/10.3382/ps/pex298

‎77.‎ Gan L, Fan H, Mahmood T, Guo Y. Dietary supplementation with ‎vitamin C ameliorates the adverse effects of Salmonella Enteritidis-‎challenge in broilers by shaping intestinal microbiota. Poult Sci. ‎‎2020; 99(7): 3663-3674.‎‏‎ ‎https://doi.org/10.1016/j.psj.2020.03.062

‎78.‎ Ravindran V. Poultry feed availability and nutrition in developing ‎countries. Poult dev rev. 2013: 1-4.‎‏‎ ‎‏ ‏https://www.fao.org/4/al703e/al703e00.pdf

‎79.‎ Al-Tememy ATD, Al-obaidy AH, Wasman PH. Adding Sodium ‎Citrate in Water and Effect in Physiological Performance of Broiler ‎Poultry s Reared under High-Density Condition. IOP Conf Ser Earth ‎Environ Sci. 2023; 1252(1): 1-7. https://doi.org/10.1088/1755-‎‎1315/1252/1/012151‎

‎80.‎ Khan RU, Naz S, Raziq F, Qudratullah Q, Khan NA, Laudadio V. et al. ‎Prospects of organic acids as safe alternative to antibiotics in ‎broiler chickens diet. Environ Sci Pollut Res Int. 2022; 29(22): ‎‎32594-32604.‎‏‎ https://doi.org/10.1007/s11356-022-19241-8‎

‎81.‎ Wu G. Dietary protein intake and human health. Food Funct. 2016; ‎‎7(3): 1251-1265.‎‏‎ https://doi.org/10.1039/C5FO01530H

‎82.‎ Chalova VI, Kim JH, Patterson PH, Ricke SC, Kim WK. Reduction of ‎nitrogen excretion and emissions from poultry: A review for ‎conventional poultry. Worlds Poult Sci j. 2016; 72(3): 509-520. ‎https://doi.org/10.1017/S0043933916000477‎‏‎

‎83.‎ Waldroup PW, Jiang Q, Fritts CA. Effects of supplementing broiler ‎diets low in crude protein with essential and nonessential amino ‎acids. Int J Poult Sci. 2005; 4(6): 425-431.‎‏ ‏‎ ‎https://doi.org/10.3923/ijps.2005.425.431‎

‎84.‎ Corzo A, Kidd MT, Dozier III, WA, Vieira SL. Marginality and needs ‎of dietary valine for broilers fed certain all-vegetable diets. J Appl ‎Poult Res. 2007; 16(4): 546-554. ‎https://doi.org/10.3382/japr.2007-00025‎

‎85.‎ Rehman AU, Arif M, Husnain MM, Alagawany,M, Abd El-Hack M. E, ‎Taha AE, et al. Growth performance of broilers as influenced by ‎different levels and sources of methionine plus cysteine. Animals. ‎‎2019; 9(12): 1-12. https://doi.org/10.3390/ani9121056‎

‎86.‎ National Research Council (NRC). Nutrient Requirements of ‎Poultry. 9th rev. ed., Natl. Acad. Press, Washington, D.C. 1994. ‎‏ ‏‏ ‏https://www.scirp.org/reference/referencespapers?referenceid=‎‎429252‎

‎87.‎ He W, Li P, Wu G. Amino Acid Nutrition and Metabolism in ‎Chickens. Adv Exp Med Biol. 2021; 1285: 109-131. ‎‏ ‏https://doi.org/10.1007/978-3-030-54462-1_7‎

‎88.‎ Wu G. Dietary requirements of synthesizable amino acids by ‎animals: a paradigm shift in protein nutrition, J Anim Sci Biotechnol. ‎‎2014; 5: 1-12.‎‏‎ https://doi.org/10.1039/C5FO01530H

‎89.‎ Woyengo TA, Bach Knudsen KE, Børsting CF, Low-protein diets for ‎broilers: Current knowledge and potential strategies to improve ‎performance and health, and to reduce environmental impact. Anim ‎Feed Sci Technol. 2023; 297: 1-18.‎‏ ‏‎ ‎https://doi.org/10.1016/j.anifeedsci.2023.115574‎

‎90.‎ ‎90. Zhang L, Jiang Y, Buzdar JA, Ahmed S, Sun X, Li, F., et al. ‎Microalgae: An Exciting Alternative Protein Source and ‎Nutraceutical for the Poultry Sector. Food Sci Anim Resour. 2025; ‎‎45(1): 243-265.‎‏‎ ‎‏ ‏https://doi.org/10.5851/kosfa.2024.e130‎

‎91.‎ ‎91. Sajjad M, Sajjad A, Chishti GA, Khan EU, Mozūraitis R, Binyameen ‎M. Insect larvae as an alternate protein source in poultry feed ‎improve the performance and meat quality of broilers. Animals. ‎‎2024; 14(14): 1-19.‎‏‎ https://doi.org/10.3390/ani14142053‎

‎92.‎ Sung JY, Aderibigbe AS, Adeola O. Amino acid digestibility and net ‎energy concentration in soybean meal for broiler chickens. Anim ‎Feed Sci Technol. 2023; 297: 115572.‎‏‎ ‎‏ ‏https://doi.org/10.1016/j.anifeedsci.2023.115572‎

‎93.‎ Sajjad M, Sajjad A, Chishti G. A, Binyameen M, Abbasi A, Haq IU, et al. ‎Evaluation of blow fly, Chrysomya megacephala (Calliphoridae: ‎Diptera) as an alternate source of protein in broiler feed. J Insects ‎Food Feed. 2024; 1: 1-19. ‎‏‎ https://doi.org/10.1163/23524588-‎‎00001109‎

‎94.‎ Alagawany M, Elnesr SS, Saleh AA, El-Shall,NA, Azzam MM, Dhama K, ‎et al. An updated review of azolla in poultry diets. Worlds Poult Sci ‎J. 2024; 80(1): 155-170.‎‏ ‏‎ ‎https://doi.org/10.1080/00439339.2023.2271886‎

‎95.‎ Van Harn J, Dijkslag MA, Van Krimpen MM. Effect of low protein ‎diets supplemented with free amino acids on growth performance, ‎slaughter yield, litter quality, and footpad lesions of male broilers. ‎Poult Sci. 2019; 98(10): 4868-4877.‎‏‎ ‎‏ ‏https://doi.org/10.3382/ps/pez229

‎96.‎ Dean DW, Bidner TD, Southern LL. Glycine supplementation to low ‎protein, amino acid-supplemented diets supports optimal ‎performance of broiler chicks. Poult Sci. 2006; 85(2): 288-296.‎‏ ‏‏ ‏‎ https://doi.org/10.1093/ps/85.2.288

‎97.‎ Ji F, Fu SY, Ren B, Wu SG, Zhang HJ, Yue HY, et al. Evaluation of ‎amino-acid supplemented diets varying in protein levels for laying ‎hens. J Appl Poult Res. 2014; 23(3): 384-392.‎‏‎ ‎‏ ‏https://doi.org/10.3382/japr.2013-00831

‎98.‎ ‎98. Grossmann L, Weiss J. Alternative protein sources as ‎technofunctional food ingredients. Annu Rev Food Sci Technol. ‎‎2021; 12(1): 93-117.‎‏‎ https://doi.org/10.1146/annurev-food-‎‎062520-093642‎

‎99.‎ Kim YB, Lee SH, Kim DH, Lee KW. Effects of dietary methyl sulfonyl ‎methane and selenium on laying performance, egg quality, gut ‎health indicators, and antioxidant capacity of laying hens. Anim ‎Biosci. 2022; 35(10): 1566.‎‏‎ https://doi.org/10.5713/ab.21.0564

‎100.‎ Surai PF. Anti-oxidants in poultry nutrition and reproduction: An ‎update. Anti-oxidants. 2020; 9(2): 1-6.‎‏‎ ‎‏ ‏https://doi.org/10.3390/antiox9020105

‎101.‎ Surai PF, Fisinin VI. Vitagenes in poultry production: Part 1. ‎Technological and environmental stresses. Worlds Poult Sci J. ‎‎2016; 72(4): 721-734.‎‏‎ ‎https://doi.org/10.1017/S0043933916000714

‎102.‎ Surai PF, Fisinin VI. Vitagenes in poultry production: Part 2. ‎Nutritional and internal stresses. Worlds Poult Sci J. 2016; 72(4): ‎‎761-772. https://doi.org/10.1017/S0043933916000726

‎103.‎ Surai PF, Kochish II, Fisinin VI. Antioxidant systems in poultry ‎biology: Nutritional modulation of vitagenes. Eur Poult Sci. 2017; ‎‎81(214): 1-21.‎‏‎ http://dx.doi.org/10.1399/eps.2017.214

‎104.‎ Nawaz AH, Zhang L. Oxidative stress in broiler chicken and its ‎consequences on meat quality. Int J Life Sci Res Arch. 2021; 1(1): ‎‎045-054.‎‏‎ https://doi.org/10.53771/ijlsra.2021.1.1.0054‎

‎105.‎ Luna A, Lema-Alba RC, Dambolena JS, Zygadlo JA, Lábaque MC, Marin ‎RH. Thymol as natural antioxidant additive for poultry feed: ‎oxidative stability improvement. Poult sci. 2017; 96(9): 3214-3220.‎‏ ‏‏ ‏https://doi.org/10.3382/ps/pex158

‎106.‎ Gurusaran S, Lokesh P, Naresh M, Hariharan M, Varun A. ‎Antioxidant a Feed Additive: Unravelling the Impact of Antioxidants ‎Supplementation on Productivity and Wellness in Animals.‎‏‎ Chron ‎Aqua Sci. 2024; 1(10): 94-101.‎‏ ‏‎ ‎http://dx.doi.org/10.61851/coas.v1i10.09‎

‎107.‎ Latham RE, Williams M, Smith K, Stringfellow K, Clemente S, Brister ‎Ret al. Effect of β-mannanase inclusion on growth performance, ileal ‎digestible energy, and intestinal viscosity of male broilers fed a ‎reduced-energy diet. J Appl Poult Res. 2016; 25(1): 40-‎‎47.‎‏https://doi.org/10.3382/japr/pfv059

‎108.‎ Abbas BA, Jasim AA, Bander LK. Effect of speed and die holes ‎diameter in the machine on feed pellets quality. IOP Conf Ser Earth ‎Environ Sci. 2023; 1252(1): 1-7. http://dx.doi.org/10.1088/1755-‎‎1315/1252/1/012116

‎109.‎ Abbas BA, Jasim AA, Bander LK. Manufacturing and Testing a ‎Double Action Feed Pellet Durability Measuring Device. IOP Conf ‎Ser Earth Environ Sci. 2023; 1259(1): 1-9. ‎http://dx.doi.org/10.1088/1755-1315/1259/1/012126‎

‎110.‎ Abbas BA, Bander LK, Jasim AA. Effect of feed forms, mash and ‎pellets on productive performance and carcass weights of broiler ‎poultry. Kufa J Agr Sci. 2024; 16(3): 105-118.‎‏‎ ‎‏ ‏https://doi.org/10.36077/kjas/2024/v16i3.11635

‎111.‎ Rigby TR, Glover BG, Foltz KL, Boney JW, Moritz JS. Effects of ‎modifying diet and feed manufacture concern areas that are ‎notorious for decreasing pellet quality. J Appl Poult Res. 2018; ‎‎27(2): 240-248.‎‏‎ https://doi.org/10.3382/japr/pfx064‎

‎112.‎ Abadi MHMG, Moravej H, Shivazad M, Torshizi MAK, Kim WK. Effect ‎of different types and levels of fat addition and pellet binders on ‎physical pellet quality of broiler feeds. Poult sci. 2019; 98(10): ‎‎4745-4754.‎‏‎ https://doi.org/10.3382/ps/pez190‎

‎113.‎ Gehring CK, Lilly KGS, Shires LK, Beaman KR, Loop SA, Moritz JS. ‎Increasing mixer-added fat reduces the electrical energy required ‎for pelleting and improves exogenous enzyme efficacy for broilers. J ‎Appl Poult Res. 2011; 20(1): 75-89.‎‏‎ ‎https://doi.org/10.3382/japr.2009-00082‎

‎114.‎ Paolucci M, Fabbrocini A, Volpe MG, Varricchio E, Coccia E. ‎Development of biopolymers as binders for feed for farmed aquatic ‎organisms. Aquaculture. 2012; 1: 3-34.‎‏‎ ‎‏ ‏http://dx.doi.org/10.5772/28116‎

‎115.‎ Tumuluru JS, Conner CC, Hoover AN. Method to produce durable ‎pellets at lower energy consumption using high moisture corn ‎stover and a corn starch binder in a flat die pellet mill. J Vis Exp. ‎‎2016; 112: 1-13. ‎‏‎ https://doi.org/10.3791/54092‎

‎116.‎ Attar A, Kermanshahi H, Golian A. Effects of conditioning time and ‎sodium bentonite on pellet quality, growth performance, intestinal ‎morphology and nutrient retention in finisher broilers. British ‎poult sci. 2018; 59(2): 190-197.‎‏‎ ‎‏ ‏https://doi.org/10.1080/00071668.2017.1409422‎

‎117.‎ Ayoola OA. Influence of the animal feed binders on optimal ‎nutritional and physical qualities of the animal feed pellets and feed ‎production capacity-A literature review, Master's thesis, ‎Norwegian University of Life Sciences. 2020: 1-79.‎‏‎ ‎https://hdl.handle.net/11250/2725193

‎118.‎ Lim C, Cuzon G. Water stability of shrimp pellet: A review. Asian ‎Fish Sci. 1994; 7: 115-126.‎‏ ‏‎ ‎‏‎ ‎https://www.asianfisheriessociety.org/publication/abstract.php?‎id=water-stability-of-shrimp-pellet-a-review

‎119.‎ Abdollahi MR, Ravindran V, Wester TJ, Ravindran G, Thomas DV. ‎Effect of improved pellet quality from the addition of a pellet binder ‎and/or moisture to a wheat-based diet conditioned at two different ‎temperatures on performance, apparent metabolisable energy and ‎ileal digestibility of starch and nitrogen in broilers. Anim Feed Sci ‎Technol. 2012; 175(3-4): 150-157. ‎‏ ‏https://doi.org/10.1016/j.anifeedsci.2012.05.001

‎120.‎ Acar N, Moran Jr ET, Revington WH, Bilgili SF. Effect of improved ‎pellet quality from using a calcium lignosulfonate binder on ‎performance and carcass yield of broilers reared under different ‎marketing schemes. Poult Sci. 1991; 70(6): 1339-1344.‎‏‎ ‎‏ ‏https://doi.org/10.3382/ps.0701339

‎121.‎ Tabil L, Sokhansanj S, Tyler RT. Performance of different binders ‎during alfalfa pelleting. Can Agric Engin. 1997; 39(1): 17-23.‎‏‎ ‎‏ ‏http://www.csbe-scgab.ca/docs/journal/39/39_1_17_ocr.pdf

‎122.‎ Sekarsari NGAMS. Xylanase Enzyme on Broiler Performance Fed ‎Cassava Based Diet in Forms of Pellet and Mash. In 6th ‎International Seminar of Animal Nutrition and Feed Science. 2022; ‎‎21: 304-308.https://doi.org/10.2991/absr.k.220401.063‎

‎123.‎ Ravindran V, Son JH. Feed enzyme technology: present status and ‎future developments. Recent Pat Food Nutr Agric. 2011; 3(2): 102-‎‎109.‎‏‎ http://dx.doi.org/10.2174/2212798411103020102

‎124.‎ Singh P, Yadav SK. Feed Enzymes: Source and Applications. Enzymes ‎in Food Technology: Improv Innov. 2018: 347-358. ‎‏ ‏https://doi.org/10.1007/978-981-13-1933-4_17

‎125.‎ Imran M, Nazar M, Saif M, Khan MA, Vardan M, Javed O. Role of ‎enzymes in animal nutrition: a review. PSM Vet Res. 2016; 1(2): 38-‎‎45. ‎‏‎ https://psmjournals.org/index.php/vetres/article/view/84‎

‎126.‎ Stefanello C, Vieira SL, Rios HV, Simões CT, Ferzola PH, Sorbara JOB, ‎et al. Effects of energy, α-amylase, and β-xylanase on growth ‎performance of broiler chickens. Anim Feed Sci Technol. 2017; 225: ‎‎205-212. ‎‏https://doi.org/10.1016/j.anifeedsci.2017.01.019‎

‎127.‎ Olukosi OA, Beeson LA, Englyst K, Romero LF. Effects of exogenous ‎proteases without or with carbohydrases on nutrient digestibility ‎and disappearance of non-starch polysaccharides in broiler ‎poultry chickens. Poult Sci. 2015; 94(11): 2662-2669.‎‏ ‏‎ ‎https://doi.org/10.3382%2Fps%2Fpev260

‎128.‎ Cowieson AJ, Lu H, Ajuwon KM, Knap I, Adeola O. Interactive effects ‎of dietary protein source and exogenous protease on growth ‎performance, immune competence and jejunal health of broiler ‎poultry chickens. Anim Prod Sci. 2016; 57(2): 252-261.‎‏‎ ‎‏ ‏https://doi.org/10.1071/AN15523

‎129.‎ Debnath D, Sahu NP, Pal AK, Baruah K, Yengkokpam S, Mukherjee SC. ‎Present scenario and future prospects of phytase in aquafeed-‎Review. Asian-Australas J Anim Sci. 2005; 18(12): 1800-1812.‎‏‎ ‎‏ ‏‏ ‏https://doi.org/10.5713/ajas.2005.1800‎

‎130.‎ Abd El-Hack ME, Alagawany Arif M, Emam M, Saeed M, Arain MA., et ‎al. The uses of microbial phytase as a feed additive in poultry ‎nutrition–a review. Ann Anim Sci. 2018; 18(3): 639-658.‎‏‎ ‎‏ ‏‏ ‏https://doi.org/10.2478/aoas-2018-0009‎

‎131.‎ Torres-Pitarch A, Manzanilla EG, Gardiner GE, O’Doherty JV, Lawlor ‎PG. Systematic review and meta-analysis of the effect of feed ‎enzymes on growth and nutrient digestibility in grow-finisher pigs: ‎Effect of enzyme type and cereal source. Anim Feed Sci Technol. ‎‎2019; 251: 153-165.‎‏‎ ‎https://doi.org/10.1016/j.anifeedsci.2018.12.007‎

‎132.‎ Herwig E, Schwean-Lardner K, Van Kessel A, Savary RK, Classen HL. ‎Assessing the effect of starch digestion characteristics on ileal ‎brake activation in broiler chickens. PLoS One. 2020; 15(2): 1-20.‎‏‎ ‎https://doi.org/10.1371/journal.pone.0228647‎

‎133.‎ Genova JL, Rupolo PE, Melo ADB, dos Santos LBDA, Wendt GN, ‎Barbosa KA. et al. Biological response of piglets challenged with ‎Escherichia coli F4 (K88) when fed diets containing intestinal ‎alkaline phosphatase. Czech J Anim Sci. 2021; 66 (10): 391-402. ‎‏ ‏‏ ‏https://doi.org/10.17221/82/2021-CJAS

‎134.‎ Bruch CA, Andrade TDS, Rohloff N, Ribeiro TP, Vargas JGD, Nunes ‎RV. Alpha-amylase supplementation improves broiler performance ‎and intestinal health under reduced metabolizable energy ‎conditions. Anim Sci Vet. 2024; 48, 1-12.‎‏‎ ‎https://doi.org/10.1590/1413-7054202448015824‎

‎135.‎ Wu YB, Ravindran V. Influence of whole wheat inclusion and ‎xylanase supplementation on the performance, digestive tract ‎measurements and carcass characteristics of broiler chickens. ‎Anim Feed Sci Technol. 2004; 116(1-2): 129-139.‎‏‎ ‎‏ ‏https://doi.org/10.1016/j.anifeedsci.2004.02.011‎

‎136.‎ Gonzalez-Ortiz G, Sola-Oriol D, Martinez-Mora M, Perez JF, Bedford ‎MR. Response of broiler chickens fed wheat-based diets to xylanase ‎supplementation. Poult Sci. 2017; 96(8): 2776-2785.‎‏ ‏‎ ‎https://doi.org/10.3382/ps/pex092‎

‎137.‎ Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, ‎Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J ‎Nutr. 2010; 104(2): 1-63. ‎‏https://doi.org/10.1017/s0007114510003363

‎138.‎ Nelson JR, Ibrahim MM, Sobotik EB, Athrey G, Archer GS. Effects of ‎yeast fermentate supplementation on cecal microbiome, plasma ‎biochemistry and ileal histomorphology in stressed broiler ‎chickens. Livest Sci. 2020; 240: 104149.‎‏ ‏‎ ‎‏‎ ‎https://doi.org/10.1016/j.livsci.2020.104149‎

‎139.‎ You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion ‎mechanism of prebiotics for probiotics: A review. Front Nutr. ‎‎2022; 9: 1-22. https://doi.org/10.3389/fnut.2022.1000517‎

‎140.‎ Gu J, Thomas‐Ahner JM, Riedl KM, Bailey MT, Vodovotz Y, Schwartz ‎SJ, et al. Dietary black raspberries impact the colonic microbiome ‎and phytochemical metabolites in mice. Mol Nutr Food Res. 2019; ‎‎63(8): 1800636.‎‏‎ https://doi.org/10.1002/mnfr.201800636‎

‎141.‎ Jiao X, Wang Y, Lin Y, Lang Y, Li E, Zhang X, et al. Blueberry ‎polyphenols extract as a potential prebiotic with anti-obesity ‎effects on C57BL/6 J mice by modulating the gut microbiota. J Nutr ‎Biochem. 2019; 64: 88-100.‎‏‎ ‎https://doi.org/10.1016/j.jnutbio.2018.07.008‎

‎142.‎ Yaqoob MU, Abd El-Hack ME, Hassan F, El-Saadony MT, Khafaga AF, ‎Batiha GE, et al. The potential mechanistic insights and future ‎implications for the effect of prebiotics on poultry performance, gut ‎microbiome, and intestinal morphology. Poult sci. 2021; 100(7): 1-‎‎12.‎‏‎ https://doi.org/10.1016/j.psj.2021.101143‎

‎143.‎ Ricke SC, Lee, SI, Kim SA, Park SH, Shi Z. Prebiotics and the poultry ‎gastrointestinal tract microbiome. Poult sci. 2020; 99(2): 670-677.‎‏‎ ‎https://doi.org/10.1016/j.psj.2019.12.018

‎144.‎ Liu HY, Li X, Zhu X, Dong WG, Yang GQ. Soybean oligosaccharides ‎attenuate odour compounds in excreta by modulating the caecal ‎microbiota in broilers. Animal. 2021; 15(3): 1-8. ‎‏ ‏‏https://doi.org/10.1016/j.animal.2020.100159‎

‎145.‎ Liu L, Li Q, Yang Y, Guo A. Biological function of short-chain fatty ‎acids and its regulation on intestinal health of poultry. Front Vet ‎Sci. 2021; 8: 736739.‎‏‎ https://doi.org/10.3389/fvets.2021.736739‎

‎146.‎ Mamphogoro TP, Makete G, Modika KY, Kamutando CN. Probiotics ‎as Feed Additives for Improved Animal Health and Nutrition: ‎Books, Probiotics, Prebiotics, and Postbiotics in Human Health and ‎Sustainable Food Systems. 2024. ‎‏ ‏https://doi.org/10.5772/intechopen.1007406‎

‎147.‎ Khan RU, Naz S. The applications of probiotics in poultry ‎production. Worlds Poult Sci J. 2013; 69(3): 621-632.‎‏‎ ‎‏ ‏‏ ‏https://doi.org/10.1017/S0043933913000627‎

‎148.‎ Mak PH, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production ‎systems and important antimicrobial resistant-pathogenic bacteria ‎in poultry: a review. J Anim Sci Biotechnol. 2022; 13(1): 1-20.‎‏‎ ‎‏ ‏‏ ‏https://doi.org/10.1186/s40104-022-00786-0‎

Downloads

Issue

Section

Articles

How to Cite

Feed Additives used in Nutrition and Improve the Poultry Performance and Health: A review. (2025). The Iraqi Journal of Veterinary Medicine, 31-44. https://jcovm.uobaghdad.edu.iq/index.php/Iraqijvm/article/view/1899

Publication Dates

Received

2024-10-28

Revised

2025-01-16

Accepted

2025-04-15

Published Online First

2025-06-28