Feed Additives used in Nutrition and Improve the Poultry Performance and Health: A review
Keywords:
antibiotics, feed additives, poultry nutrition, prebiotics, poultry healthAbstract
An approach to increase the efficiency of the poultry industry is to supplement the feed additives in diets to enhance growth rates, optimize egg production, mitigate disease prevalence, and improve feed utilization. Primary constituents of poultry diets incorporate cereal grains, predominantly corn, along with wheat, barley, sorghum, and other grains. Additionally, a predominant protein source e.g. soybean meal is utilized, although alternative protein sources, both of animal and plant origin, exist. Beyond these components, the feed nutritional quality is influenced by factors such as presentation, microbial contamination, the presence of antinutritional substances, digestibility, palatability, and intestinal health. A variety of feed additives are available to address these considerations. Particularly, the commercialization of feed additives requires approval through rigorous scientific evaluation, ensuring their lack of adverse effects on human and animal health, as well as the environment. Several feed ingredients formulated in chicken diets show antinutritional properties, limiting their applicability. To fulfill energy requirements and enhance poultry health, it is necessary to develop commercially viable alternatives to existing feed resources, emphasizing safety and cost-effectiveness. This review observed diverse strategies for the utilization of feed additives within conventional poultry production systems, aiming to enhance growth, optimize egg production efficiency, and prevent disease outbreaks.
References
1. Abdulalwahhab BN, Al-Tememy ATD, Abbas BA. Study of the Location of Birds inside the Breeding Hall of Broilers Rose 308 and Its Effect on Environmental Conditions Using a Documented Data System. Plant Arch. 2020; 20 (1): 1013-1020. http://www.plantarchives.org/SPECIAL%20ISSUE%2020-1/1013-1020%20(18).pdf
2. Abbas, BA, Jasim, AA, Bander, LK. Comparing Different laboratory Methods for Measuring the Feed Pellet Durability. Kufa J Agr Sci. 2024; 16(3): 50-60. https://doi.org/10.36077/kjas/2024/v16i3.11401
3. Mandey JS, Sompie FN. Phytogenic feed additives as an alternative to antibiotic growth promoters in poultry nutrition. Adv. Stud. 21st Century Anim. Nutr. 2021; 8, 19-32. https://www.intechopen.com/chapters/77836
4. Ayalew H, Zhang H, Wang J, Wu, S, Qiu K, Qi G. et al. Potential feed additives as antibiotic alternatives in broiler production. Front Vet Sci. 2022; 9: 1-15. https://doi.org/10.3389/fvets.2022.916473
5. Yaman H, Ulukanli Z, Elmali M, Unal Y. The effect of a fermented probiotic, the Kefir, on intestinal flora of poultry domesticated geese (Anser anser). Rev Med Vet (Toulouse). 2006; 157(7): 379-386. https://api.semanticscholar.org/CorpusID:21340786
6. Ye M, Wei C, Khalid A, Hu Q, Yang R, Dai B, et al. Effect of Bacillus velezensis to substitute in-feed antibiotics on the production, blood biochemistry and egg quality indices of laying hens. BMC Vet Res. 2020; 16(1): 1-8. https://doi.org/10.1186/s12917-020-02570-6
7. Volostnova AN, Yakimov AV, Yakimov OA, Salyakhov AS, Frolov GS. Production technology of livestock and poultry products using environmentally safe feed additives. IOP Conf Ser Earth Environ Sci. 2022; 978(1): 1-6. https://doi.org/10.1088/1755-1315/978/1/012023
8. Diba F, Alam F, Talukder AA. Screening of acetic acid producing microorganisms from decomposed fruits for vinegar production. Adv Microbiol. 2015; 5(5): 291-297. http://dx.doi.org/10.4236/aim.2015.55028
9. Al-Khalaifah HS. Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poult Sci. 2018; 97(11): 3807-3815. https://doi.org/10.3382/ps/pey160
10. Al-Gharawi JK, Al-Helali AH, Al-Zamili IF. Effect of using different ways to provide the iraq probitic on some productive traits of broiler. Plant Arch. 2018; 18(1): 1102-1108. http://plantarchives.org/PDF%20181/1102-1108%20(PA3%204185).pdf
11. Buryakov N, Traynev I, Zaikina A, Buryakova M, Shaaban, M, Zagarin A. The effects of the extract of sweet chestnut in diets for broilers on the digestibility of dietary nutrients and productive performance. In International Scientific Conference Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East. 2021; 354: 778-784. https://doi.org/10.1007/978-3-030-91405-9_86
12. Pirgozliev V, Rose SP, Ivanova S. Feed additives in poultry nutrition. Bulg J Agric Sci. (2019); 25(1): 8-11. https://www.agrojournal.org/25/01s-02.pdf
13. Jones FT, Ricke SC. Observations on the history of the development of antimicrobials and their use in poultry feeds. Poult Sci. 2003; 82(4): 613-617. https://doi.org/10.1093/ps/82.4.613
14. Landoni MF, Albarellos G. The use of antimicrobial agents in broiler poultry s. Vet J, 2015; 205(1): 21-27. https://doi.org/10.1016/j.tvjl.2015.04.016
15. Hailegebreal G, Tanga BM, Woldegiorgis W, Sulayeman M, Sori T. Epidemiological investigation of morbidity and mortality of improved breeds of poultry s in small holder poultry farms in selected districts of Sidama Region, Ethiopia. Heliyon. 2022; 8(8): 1-7. https://doi.org/10.1016/j.heliyon.2022.e10074
16. Kujlu R, Mahdavianpour M, Ghanbari F. Multi-route human health risk assessment from trihalomethanes in drinking and non-drinking water in Abadan, Iran. Environ Sci Pollut Res Int. 2020; 27(34): 42621-42630. https://doi.org/10.1007/s11356-020-09990-9
17. Nwobodo DC, Ugwu MC, Oliseloke Anie C, Al‐Ouqaili MT, Chinedu Ikem J, Victor Chigozie U. et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022; 36(9):1-10. https://doi.org/10.1002/jcla.24655
18. Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: a review. Front Vet Sci. 2017; 4: 1-17. https://doi.org/10.3389/fvets.2017.00126
19. Alsadwi AM, Ibrahim MM, Shah KN, Cannon CL, Byrd JA, Caldwell D, et al. In Vitro Efficacy of Silver Carbene Complexes, SCC1 and SCC22, Against Some Enteric Animal Pathogens. Iraqi J. Vet. Med. 2024; 48(1):1-8. https://doi.org/10.30539/yvbbhj22
20. Chattopadhyay MK. Use of antibiotics as feed additives: a burning question. Front Microbiol. 2014; 5: 1-3. https://doi.org/10.3389/fmicb.2014.00334
21. Gadde U, Kim WH, Oh ST, Lillehoj HS. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev. 2017; 18(1): 26-45. https://doi.org/10.1017/S1466252316000207
22. Akhil, AM, Abdaljaleel R, Leyva-Jimenez H, Ibrahim M, Gardner K, et al. Evaluation Effect of Silver Acetate on Performance and Clostridium Perfringens-Induced Necrotic Enteritis in Broiler Chickens. Arch Anim Poult Sci. 2019; 1(2): 1-7. https://juniperpublishers.com/aaps/pdf/AAPS.MS.ID.555556.pdf
23. Rahman MRT, Fliss I, Biron E. Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics. 2022; 11(6): 1-29. https://doi.org/10.3390/antibiotics11060766
24. Levy SB. The challenge of antibiotic resistance. Scientific American. 1998; 278(3): 46-53. https://doi.org/10.1038/scientificamerican0398-46
25. Dibner J, Richards J. Antibiotic growth promoters in agriculture: history and mode of action. Poultry science, 2005; 84(4): 634-643. https://doi.org/10.1093/ps/84.4.634
26. Hughes P, Heritage J. Antibiotic growth-promoters in food animals. FAO Anim Prod Heal Pap. 2004; 25: 129-152. https://www.fao.org/4/y5159e/y5159e08.htm
27. Czaplewski L, Bax R, Clokie, M, Dawson M, Fairhead H, Fischetti, VA, et al. Alternatives to antibiotics- a pipeline portfolio review. Lancet Infect Dis. 2016; 16(2): 239-251. https://doi.org/10.1016/s1473-3099(15)00466-1
28. Patrick GL. An introduction to medicinal chemistry. Oxford university press. 2023: 924 p. https://global.oup.com/academic/product/an-introduction-to-medicinal-chemistry-9780198866664
29. Khattab WO, Elderea HB, Salem EG, Gomaa NF. Transmission of administered amoxicillin drug residues from laying poultry to their commercial eggs. J Egypt Public Health Assoc. 2010; 85(5-6): 297-316. https://pubmed.ncbi.nlm.nih.gov/22054104/
30. El-Kholy H, Kemppainen BW. Levamisole residues in poultry tissues and eggs. Poult Sci. 2005; 84(1): 9-13. https://doi.org/10.1093/ps/84.1.9
31. Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev. 1996; 19(1): 1-24. https://doi.org/10.1111/j.1574-6976.1996.tb00251.x
32. Thaker M, Spanogiannopoulos P, Wright G D. The tetracycline resistome. Cell Mol Life Sci. 2010; 67: 419-431. https://doi.org/10.1007/s00018-009-0172-6
33. Center for Veterinary Medicine. Summary report on antimicrobials sold or distributed for use in food-producing animals. U.S. Food and Drug Administration, Silver Spring, MD. 2018. https://www.fda.gov/media/133411/download
34. Zakeri B, Wright GD. Chemical biology of tetracycline antibiotics. Biochem Cell Biol. 2008; 86(2): 124-136. https://doi.org/10.1139/O08-002
35. Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, et al. Disrupting the ArcA regulatory network amplifies the fitness cost of tetracycline resistance in Escherichia coli. Msystems. 2023; 8(1): 1-21. https://doi.org/10.1128/msystems.00904-22
36. Vass M, Hruska K, Franek M. Nitrofuran antibiotics: a review on the application, prohibition and residual analysis. Vet Med. 2008; 53(9): 469-500. https://doi.org/10.17221/1979-VETMED
37. Majalekar PP, Shirote, PJ. Fluoroquinolones: blessings or curses. Curr Drug Targets. 2020; 21(13): 1354-1370. https://doi.org/10.2174/1389450121666200621193355
38. Dagur P, Ghosh M, Patra A. Aminoglycoside antibiotics. In Medicinal Chemistry of Chemotherapeutic Agents. 2023; 135-155. https://doi.org/10.1016/B978-0-323-90575-6.00009-0
39. Mehtabuddin M, Mian AA, Ahmad T, Nadeem S, Tanveer ZI, Arshad J. Sulfonamide residues determination in commercial poultry meat and eggs. J Anim Plant Sci. 2012; 22(2): 473-478. https://www.thejaps.org.pk/Volume/2012/22-2/default.php
40. Vázquez-Laslop N, Mankin AS. How macrolide antibiotics work. Trends Biochem Sci. 2018; 43(9): 668-684. https://doi.org/10.1016/j.tibs.2018.06.011waaaaa
41. Dinos GP. The macrolide antibiotic renaissance. Br J Pharmacol. 2017; 174(18): 2967-2983. https://doi.org/10.1111/bph.13936
42. Matijašić M, Kos VM, Nujić K, Čužić S, Padovan J, Kragol G, et al. Fluorescently labeled macrolides as a tool for monitoring cellular and tissue distribution of azithromycin. Pharmacol Res. 2012; 66(4): 332-342. https://doi.org/10.1016/j.phrs.2012.06.001
43. Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harbor perspectives in medicine. 2016; 6(6): 1-19. https://perspectivesinmedicine.cshlp.org/content/6/6/a027029.full
44. Mazalli MR, Maldonado RR, Aguiar-Oliveira E. Screening and Analysis of Probiotic Actinobacteria in Poultry Farming. Met Acti. 2022: 563-569. https://doi.org/10.1007/978-1-0716-1728-1_84
45. Clarke L, Fodey TL, Crooks SR, Moloney M, O'Mahony J, Delahaut P, et al. A review of coccidiostats and the analysis of their residues in meat and other food. Meat Sci. 2014; 97(3): 358-374. https://doi.org/10.1016/j.meatsci.2014.01.004
46. Martins RR, Silva LJ, Pereira AM, Esteves, A., Duarte SC, Pena A. Coccidiostats and poultry: A comprehensive review and current legislation. Foods. 2022; 11(18): 1-20. https://doi.org/10.3390/foods11182738
47. Sharma SK, Galav V, Rathore PS. Amphenicols: Dilemma of Use and Abuse in Poultry. In Handbook on Antimicrobial Resistance: Current Status, Trends in Detection and Mitigation Measures, Singapore: Springer Nature Singapore. 2023; 201-214. https://doi.org/10.1007/978-981-19-9279-7_12
48. Trif E, Cerbu C, Olah D, Zăblău SD, Spînu M., Potârniche, et al. Old antibiotics can learn new ways: a systematic review of florfenicol use in veterinary medicine and future perspectives using nanotechnology. Animals. 2023; 13(10): 1-19. https://doi.org/10.3390/ani13101695
49. EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Chloramphenicol in food and feed. EFSA J. 2014; 12(11): 1-146. https://doi.org/10.2903/j.efsa.2014.3907
50. Bacanh M, Başaran N. Importance of antibiotic residues in animal food. Food Cosmet Toxicol. 2019; 125: 462-466. https://doi.org/10.1016/j.fct.2019.01.033
51. Kantati YT. Détection des résidus d’antibiotiques dans les viandes de bovins prélevées aux abattoirs de Dakar. Mémoire de master qualité des aliments de l’homme, spécialité: Produits d’origine animale, Ecole Inter-états des Sciences et Médecine vétérinaires (EISMV), Dakar. 2011: 1-49. https://beep.ird.fr/greenstone/collect/eismv/index/assoc/MEM11-15.dir/MEM11-15.pdf
52. Gassner B, Wuethrich A. Pharmacokinetic and toxicological aspects of the medication of beef‐type calves with an oral formulation of chloramphenicol palmitate. J Vet Pharmacol Ther. 1994; 17(4): 279-283. https://doi.org/10.1111/j.1365-2885.1994.tb00246.x
53. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015; 40(4): 277-283. https://pubmed.ncbi.nlm.nih.gov/25859123/
54. Barlow M, Hall BG. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrob Agents Chemother. 2002; 46(5): 1190-1198. https://doi.org/10.1128/AAC.46.5.1190-1198.2002
55. Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull World Health Organ. 2004; 82(5): 346-353. https://pubmed.ncbi.nlm.nih.gov/15298225/
56. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al., Hoekstra RM. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010; 50(6): 882-889. https://doi.org/10.1086/650733
57. Allerberger F, Liesegang A, Grif K, Khaschabi D, Prager R, Danzl J, et al. Occurrence of Salmonella enterica serovar Dublin in Austria. Wien Med Wochenschr. 2003; 153(7‐8): 148-152. https://doi.org/10.1046/j.1563-258X.2003.03015.x
58. Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. Campylobacter spp. as a foodborne pathogen: a review. Front Microbiol. 2011; 2, 1-12. https://doi.org/10.3389/fmicb.2011.00200
59. Engberg J, Aarestrup FM, Taylor DE, Gerner-Smidt P, Nachamkin I. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg Infect Dis. 2001; 7(1): 24-34. https://doi.org/10.3201%2Feid0701.010104
60. Endtz HP, Ruijs GJ, van Klingeren, B, Jansen WH, van der Reyden T, Mouton RP. Quinolone resistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother. 1991; 27(2): 199-208. https://doi.org/10.1093/jac/27.2.199
61. Ramos S, Silva V, Dapkevicius MDLE, Caniça M, Tejedor-Junco MT, Igrejas G, et al. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals. 2020; 10(12): 1-15. https://doi.org/10.3390/ani10122239
62. Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: an overview. Int J Environ Res Public Health. 2013; 10(12): 6235-6254. https://doi.org/10.3390/ijerph10126235
63. Lazarus B, Paterson DL, Mollinger JL, Rogers BA. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin Infect Dis. 2015; 60(3): 439-452. https://doi.org/10.1093/cid/ciu785
64. Wegener HC, Aarestrup FM, Jensen LB, Hammerum AM, Bager F. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerg Infect Dis. 1999; 5(3): 329-335. https://doi.org/10.3201/eid0503.990303
65. Edmond MB, Ober JF, Dawson JD, Weinbaum DL, Wenzel RP. Vancomycin-resistant enterococcal bacteremia: natural history and attributable mortality. Clin Infect Dis. 1996; 23(6): 1234-1239. https://doi.org/10.1093/clinids/23.6.1234
66. Wise R. An overview of the specialist advisory committee on antimicrobial resistance (SACAR). J Antimicrob Chemother. 2007; 60(suppl. 1): 5-7. https://doi.org/10.1093/jac/dkm151
67. Sabir PS, Mirza RA, Hamedmin, AE, Abdulla HS. Efficacy of peppermint (Mentha pipreitae), basil (Ocimum basilicum) and their combination on growth performance and meat quality of broilers. Diyala Agr Sci J. 2023; 15(1): 26-33. https://doi.org/10.52951/dasj.23150104
68. Grave K, Jensen VF, Odensvik K, Wierup M, Bangen M. Usage of veterinary therapeutic antimicrobials in Denmark, Norway and Sweden following termination of antimicrobial growth promoter use. Prev Vet Med. 2006; 75(1-2): 123-132. https://doi.org/10.1016/j.prevetmed.2006.02.003
69. Anadón A, Martínez-Larrañaga MR, Ares I, Martínez MA. Regulatory aspects for the drugs and chemicals used in food-producing animals in the European Union. Vet Toxicol (Third Edition). 2018: 103-131. https://doi.org/10.1016/B978-0-12-811410-0.00007-6
70. Faugeron J, Oguey C. Flavours: versatile sensory additives. Pancosma. Reproduced from Feed Compounder. 2020: 1-2. https://www.pancosma.com/flavours-versatile-sensory-additives-2/
71. Breithaupt DE. Modern application of xanthophylls in animal feeding-a review. Trends Food Sci Technol. 2007; 18(10): 501-506. https://doi.org/10.1016/j.tifs.2007.04.009
72. Breithaupt DE. Xanthophylls in Poultry Feeding. In: Britton G, Liaaen-Jensen S, Pfander H. (eds) Carotenoids. Carotenoids. 2008; 4: 1-2. https://doi.org/10.1007/978-3-7643-7499-0_13
73. Baker R, Günther, C. The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends Food Sci Technol. 2004; 15(10): 484-488. https://doi.org/10.1016/j.tifs.2004.04.0094
74. Santos TTD, Baal SCS, Lee SA, Silva VFD, Favaro C, da Silva VF. Immune profile of broilers between hatch and 9 days of age fed diets with different betaine and fibre concentrations. J Worlds Poult Res. 2020; 10(2): 397-406. https://dx.doi.org/10.36380/jwpr.2020.47
75. Arisandi R, Hamid A, Saleh E, Zain WN, Sholikin MM, Prihambodo TR, et al. The Effects of Mixed Vitamins, Minerals, Fatty Acids and Amino Acids Supplementation into Drinking Water on Broiler Poultry s’ Performance and Carcass Traits. J Worlds Poult Res. 2021; 11(1): 47-52. https://dx.doi.org/10.36380/jwpr.2021.7
76. El-Senousey HK, Chen B, Wang JY, Atta AM, Mohamed FR, Nie QH. Effects of dietary vitamin C, vitamin E, and alpha-lipoic acid supplementation on the antioxidant defense system and immune-related gene expression in broilers exposed to oxidative stress by dexamethasone. Poult sci. 2018; 97(1): 30-38. https://doi.org/10.3382/ps/pex298
77. Gan L, Fan H, Mahmood T, Guo Y. Dietary supplementation with vitamin C ameliorates the adverse effects of Salmonella Enteritidis-challenge in broilers by shaping intestinal microbiota. Poult Sci. 2020; 99(7): 3663-3674. https://doi.org/10.1016/j.psj.2020.03.062
78. Ravindran V. Poultry feed availability and nutrition in developing countries. Poult dev rev. 2013: 1-4. https://www.fao.org/4/al703e/al703e00.pdf
79. Al-Tememy ATD, Al-obaidy AH, Wasman PH. Adding Sodium Citrate in Water and Effect in Physiological Performance of Broiler Poultry s Reared under High-Density Condition. IOP Conf Ser Earth Environ Sci. 2023; 1252(1): 1-7. https://doi.org/10.1088/1755-1315/1252/1/012151
80. Khan RU, Naz S, Raziq F, Qudratullah Q, Khan NA, Laudadio V. et al. Prospects of organic acids as safe alternative to antibiotics in broiler chickens diet. Environ Sci Pollut Res Int. 2022; 29(22): 32594-32604. https://doi.org/10.1007/s11356-022-19241-8
81. Wu G. Dietary protein intake and human health. Food Funct. 2016; 7(3): 1251-1265. https://doi.org/10.1039/C5FO01530H
82. Chalova VI, Kim JH, Patterson PH, Ricke SC, Kim WK. Reduction of nitrogen excretion and emissions from poultry: A review for conventional poultry. Worlds Poult Sci j. 2016; 72(3): 509-520. https://doi.org/10.1017/S0043933916000477
83. Waldroup PW, Jiang Q, Fritts CA. Effects of supplementing broiler diets low in crude protein with essential and nonessential amino acids. Int J Poult Sci. 2005; 4(6): 425-431. https://doi.org/10.3923/ijps.2005.425.431
84. Corzo A, Kidd MT, Dozier III, WA, Vieira SL. Marginality and needs of dietary valine for broilers fed certain all-vegetable diets. J Appl Poult Res. 2007; 16(4): 546-554. https://doi.org/10.3382/japr.2007-00025
85. Rehman AU, Arif M, Husnain MM, Alagawany,M, Abd El-Hack M. E, Taha AE, et al. Growth performance of broilers as influenced by different levels and sources of methionine plus cysteine. Animals. 2019; 9(12): 1-12. https://doi.org/10.3390/ani9121056
86. National Research Council (NRC). Nutrient Requirements of Poultry. 9th rev. ed., Natl. Acad. Press, Washington, D.C. 1994. https://www.scirp.org/reference/referencespapers?referenceid=429252
87. He W, Li P, Wu G. Amino Acid Nutrition and Metabolism in Chickens. Adv Exp Med Biol. 2021; 1285: 109-131. https://doi.org/10.1007/978-3-030-54462-1_7
88. Wu G. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition, J Anim Sci Biotechnol. 2014; 5: 1-12. https://doi.org/10.1039/C5FO01530H
89. Woyengo TA, Bach Knudsen KE, Børsting CF, Low-protein diets for broilers: Current knowledge and potential strategies to improve performance and health, and to reduce environmental impact. Anim Feed Sci Technol. 2023; 297: 1-18. https://doi.org/10.1016/j.anifeedsci.2023.115574
90. 90. Zhang L, Jiang Y, Buzdar JA, Ahmed S, Sun X, Li, F., et al. Microalgae: An Exciting Alternative Protein Source and Nutraceutical for the Poultry Sector. Food Sci Anim Resour. 2025; 45(1): 243-265. https://doi.org/10.5851/kosfa.2024.e130
91. 91. Sajjad M, Sajjad A, Chishti GA, Khan EU, Mozūraitis R, Binyameen M. Insect larvae as an alternate protein source in poultry feed improve the performance and meat quality of broilers. Animals. 2024; 14(14): 1-19. https://doi.org/10.3390/ani14142053
92. Sung JY, Aderibigbe AS, Adeola O. Amino acid digestibility and net energy concentration in soybean meal for broiler chickens. Anim Feed Sci Technol. 2023; 297: 115572. https://doi.org/10.1016/j.anifeedsci.2023.115572
93. Sajjad M, Sajjad A, Chishti G. A, Binyameen M, Abbasi A, Haq IU, et al. Evaluation of blow fly, Chrysomya megacephala (Calliphoridae: Diptera) as an alternate source of protein in broiler feed. J Insects Food Feed. 2024; 1: 1-19. https://doi.org/10.1163/23524588-00001109
94. Alagawany M, Elnesr SS, Saleh AA, El-Shall,NA, Azzam MM, Dhama K, et al. An updated review of azolla in poultry diets. Worlds Poult Sci J. 2024; 80(1): 155-170. https://doi.org/10.1080/00439339.2023.2271886
95. Van Harn J, Dijkslag MA, Van Krimpen MM. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult Sci. 2019; 98(10): 4868-4877. https://doi.org/10.3382/ps/pez229
96. Dean DW, Bidner TD, Southern LL. Glycine supplementation to low protein, amino acid-supplemented diets supports optimal performance of broiler chicks. Poult Sci. 2006; 85(2): 288-296. https://doi.org/10.1093/ps/85.2.288
97. Ji F, Fu SY, Ren B, Wu SG, Zhang HJ, Yue HY, et al. Evaluation of amino-acid supplemented diets varying in protein levels for laying hens. J Appl Poult Res. 2014; 23(3): 384-392. https://doi.org/10.3382/japr.2013-00831
98. 98. Grossmann L, Weiss J. Alternative protein sources as technofunctional food ingredients. Annu Rev Food Sci Technol. 2021; 12(1): 93-117. https://doi.org/10.1146/annurev-food-062520-093642
99. Kim YB, Lee SH, Kim DH, Lee KW. Effects of dietary methyl sulfonyl methane and selenium on laying performance, egg quality, gut health indicators, and antioxidant capacity of laying hens. Anim Biosci. 2022; 35(10): 1566. https://doi.org/10.5713/ab.21.0564
100. Surai PF. Anti-oxidants in poultry nutrition and reproduction: An update. Anti-oxidants. 2020; 9(2): 1-6. https://doi.org/10.3390/antiox9020105
101. Surai PF, Fisinin VI. Vitagenes in poultry production: Part 1. Technological and environmental stresses. Worlds Poult Sci J. 2016; 72(4): 721-734. https://doi.org/10.1017/S0043933916000714
102. Surai PF, Fisinin VI. Vitagenes in poultry production: Part 2. Nutritional and internal stresses. Worlds Poult Sci J. 2016; 72(4): 761-772. https://doi.org/10.1017/S0043933916000726
103. Surai PF, Kochish II, Fisinin VI. Antioxidant systems in poultry biology: Nutritional modulation of vitagenes. Eur Poult Sci. 2017; 81(214): 1-21. http://dx.doi.org/10.1399/eps.2017.214
104. Nawaz AH, Zhang L. Oxidative stress in broiler chicken and its consequences on meat quality. Int J Life Sci Res Arch. 2021; 1(1): 045-054. https://doi.org/10.53771/ijlsra.2021.1.1.0054
105. Luna A, Lema-Alba RC, Dambolena JS, Zygadlo JA, Lábaque MC, Marin RH. Thymol as natural antioxidant additive for poultry feed: oxidative stability improvement. Poult sci. 2017; 96(9): 3214-3220. https://doi.org/10.3382/ps/pex158
106. Gurusaran S, Lokesh P, Naresh M, Hariharan M, Varun A. Antioxidant a Feed Additive: Unravelling the Impact of Antioxidants Supplementation on Productivity and Wellness in Animals. Chron Aqua Sci. 2024; 1(10): 94-101. http://dx.doi.org/10.61851/coas.v1i10.09
107. Latham RE, Williams M, Smith K, Stringfellow K, Clemente S, Brister Ret al. Effect of β-mannanase inclusion on growth performance, ileal digestible energy, and intestinal viscosity of male broilers fed a reduced-energy diet. J Appl Poult Res. 2016; 25(1): 40-47.https://doi.org/10.3382/japr/pfv059
108. Abbas BA, Jasim AA, Bander LK. Effect of speed and die holes diameter in the machine on feed pellets quality. IOP Conf Ser Earth Environ Sci. 2023; 1252(1): 1-7. http://dx.doi.org/10.1088/1755-1315/1252/1/012116
109. Abbas BA, Jasim AA, Bander LK. Manufacturing and Testing a Double Action Feed Pellet Durability Measuring Device. IOP Conf Ser Earth Environ Sci. 2023; 1259(1): 1-9. http://dx.doi.org/10.1088/1755-1315/1259/1/012126
110. Abbas BA, Bander LK, Jasim AA. Effect of feed forms, mash and pellets on productive performance and carcass weights of broiler poultry. Kufa J Agr Sci. 2024; 16(3): 105-118. https://doi.org/10.36077/kjas/2024/v16i3.11635
111. Rigby TR, Glover BG, Foltz KL, Boney JW, Moritz JS. Effects of modifying diet and feed manufacture concern areas that are notorious for decreasing pellet quality. J Appl Poult Res. 2018; 27(2): 240-248. https://doi.org/10.3382/japr/pfx064
112. Abadi MHMG, Moravej H, Shivazad M, Torshizi MAK, Kim WK. Effect of different types and levels of fat addition and pellet binders on physical pellet quality of broiler feeds. Poult sci. 2019; 98(10): 4745-4754. https://doi.org/10.3382/ps/pez190
113. Gehring CK, Lilly KGS, Shires LK, Beaman KR, Loop SA, Moritz JS. Increasing mixer-added fat reduces the electrical energy required for pelleting and improves exogenous enzyme efficacy for broilers. J Appl Poult Res. 2011; 20(1): 75-89. https://doi.org/10.3382/japr.2009-00082
114. Paolucci M, Fabbrocini A, Volpe MG, Varricchio E, Coccia E. Development of biopolymers as binders for feed for farmed aquatic organisms. Aquaculture. 2012; 1: 3-34. http://dx.doi.org/10.5772/28116
115. Tumuluru JS, Conner CC, Hoover AN. Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mill. J Vis Exp. 2016; 112: 1-13. https://doi.org/10.3791/54092
116. Attar A, Kermanshahi H, Golian A. Effects of conditioning time and sodium bentonite on pellet quality, growth performance, intestinal morphology and nutrient retention in finisher broilers. British poult sci. 2018; 59(2): 190-197. https://doi.org/10.1080/00071668.2017.1409422
117. Ayoola OA. Influence of the animal feed binders on optimal nutritional and physical qualities of the animal feed pellets and feed production capacity-A literature review, Master's thesis, Norwegian University of Life Sciences. 2020: 1-79. https://hdl.handle.net/11250/2725193
118. Lim C, Cuzon G. Water stability of shrimp pellet: A review. Asian Fish Sci. 1994; 7: 115-126. https://www.asianfisheriessociety.org/publication/abstract.php?id=water-stability-of-shrimp-pellet-a-review
119. Abdollahi MR, Ravindran V, Wester TJ, Ravindran G, Thomas DV. Effect of improved pellet quality from the addition of a pellet binder and/or moisture to a wheat-based diet conditioned at two different temperatures on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broilers. Anim Feed Sci Technol. 2012; 175(3-4): 150-157. https://doi.org/10.1016/j.anifeedsci.2012.05.001
120. Acar N, Moran Jr ET, Revington WH, Bilgili SF. Effect of improved pellet quality from using a calcium lignosulfonate binder on performance and carcass yield of broilers reared under different marketing schemes. Poult Sci. 1991; 70(6): 1339-1344. https://doi.org/10.3382/ps.0701339
121. Tabil L, Sokhansanj S, Tyler RT. Performance of different binders during alfalfa pelleting. Can Agric Engin. 1997; 39(1): 17-23. http://www.csbe-scgab.ca/docs/journal/39/39_1_17_ocr.pdf
122. Sekarsari NGAMS. Xylanase Enzyme on Broiler Performance Fed Cassava Based Diet in Forms of Pellet and Mash. In 6th International Seminar of Animal Nutrition and Feed Science. 2022; 21: 304-308.https://doi.org/10.2991/absr.k.220401.063
123. Ravindran V, Son JH. Feed enzyme technology: present status and future developments. Recent Pat Food Nutr Agric. 2011; 3(2): 102-109. http://dx.doi.org/10.2174/2212798411103020102
124. Singh P, Yadav SK. Feed Enzymes: Source and Applications. Enzymes in Food Technology: Improv Innov. 2018: 347-358. https://doi.org/10.1007/978-981-13-1933-4_17
125. Imran M, Nazar M, Saif M, Khan MA, Vardan M, Javed O. Role of enzymes in animal nutrition: a review. PSM Vet Res. 2016; 1(2): 38-45. https://psmjournals.org/index.php/vetres/article/view/84
126. Stefanello C, Vieira SL, Rios HV, Simões CT, Ferzola PH, Sorbara JOB, et al. Effects of energy, α-amylase, and β-xylanase on growth performance of broiler chickens. Anim Feed Sci Technol. 2017; 225: 205-212. https://doi.org/10.1016/j.anifeedsci.2017.01.019
127. Olukosi OA, Beeson LA, Englyst K, Romero LF. Effects of exogenous proteases without or with carbohydrases on nutrient digestibility and disappearance of non-starch polysaccharides in broiler poultry chickens. Poult Sci. 2015; 94(11): 2662-2669. https://doi.org/10.3382%2Fps%2Fpev260
128. Cowieson AJ, Lu H, Ajuwon KM, Knap I, Adeola O. Interactive effects of dietary protein source and exogenous protease on growth performance, immune competence and jejunal health of broiler poultry chickens. Anim Prod Sci. 2016; 57(2): 252-261. https://doi.org/10.1071/AN15523
129. Debnath D, Sahu NP, Pal AK, Baruah K, Yengkokpam S, Mukherjee SC. Present scenario and future prospects of phytase in aquafeed-Review. Asian-Australas J Anim Sci. 2005; 18(12): 1800-1812. https://doi.org/10.5713/ajas.2005.1800
130. Abd El-Hack ME, Alagawany Arif M, Emam M, Saeed M, Arain MA., et al. The uses of microbial phytase as a feed additive in poultry nutrition–a review. Ann Anim Sci. 2018; 18(3): 639-658. https://doi.org/10.2478/aoas-2018-0009
131. Torres-Pitarch A, Manzanilla EG, Gardiner GE, O’Doherty JV, Lawlor PG. Systematic review and meta-analysis of the effect of feed enzymes on growth and nutrient digestibility in grow-finisher pigs: Effect of enzyme type and cereal source. Anim Feed Sci Technol. 2019; 251: 153-165. https://doi.org/10.1016/j.anifeedsci.2018.12.007
132. Herwig E, Schwean-Lardner K, Van Kessel A, Savary RK, Classen HL. Assessing the effect of starch digestion characteristics on ileal brake activation in broiler chickens. PLoS One. 2020; 15(2): 1-20. https://doi.org/10.1371/journal.pone.0228647
133. Genova JL, Rupolo PE, Melo ADB, dos Santos LBDA, Wendt GN, Barbosa KA. et al. Biological response of piglets challenged with Escherichia coli F4 (K88) when fed diets containing intestinal alkaline phosphatase. Czech J Anim Sci. 2021; 66 (10): 391-402. https://doi.org/10.17221/82/2021-CJAS
134. Bruch CA, Andrade TDS, Rohloff N, Ribeiro TP, Vargas JGD, Nunes RV. Alpha-amylase supplementation improves broiler performance and intestinal health under reduced metabolizable energy conditions. Anim Sci Vet. 2024; 48, 1-12. https://doi.org/10.1590/1413-7054202448015824
135. Wu YB, Ravindran V. Influence of whole wheat inclusion and xylanase supplementation on the performance, digestive tract measurements and carcass characteristics of broiler chickens. Anim Feed Sci Technol. 2004; 116(1-2): 129-139. https://doi.org/10.1016/j.anifeedsci.2004.02.011
136. Gonzalez-Ortiz G, Sola-Oriol D, Martinez-Mora M, Perez JF, Bedford MR. Response of broiler chickens fed wheat-based diets to xylanase supplementation. Poult Sci. 2017; 96(8): 2776-2785. https://doi.org/10.3382/ps/pex092
137. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010; 104(2): 1-63. https://doi.org/10.1017/s0007114510003363
138. Nelson JR, Ibrahim MM, Sobotik EB, Athrey G, Archer GS. Effects of yeast fermentate supplementation on cecal microbiome, plasma biochemistry and ileal histomorphology in stressed broiler chickens. Livest Sci. 2020; 240: 104149. https://doi.org/10.1016/j.livsci.2020.104149
139. You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion mechanism of prebiotics for probiotics: A review. Front Nutr. 2022; 9: 1-22. https://doi.org/10.3389/fnut.2022.1000517
140. Gu J, Thomas‐Ahner JM, Riedl KM, Bailey MT, Vodovotz Y, Schwartz SJ, et al. Dietary black raspberries impact the colonic microbiome and phytochemical metabolites in mice. Mol Nutr Food Res. 2019; 63(8): 1800636. https://doi.org/10.1002/mnfr.201800636
141. Jiao X, Wang Y, Lin Y, Lang Y, Li E, Zhang X, et al. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. J Nutr Biochem. 2019; 64: 88-100. https://doi.org/10.1016/j.jnutbio.2018.07.008
142. Yaqoob MU, Abd El-Hack ME, Hassan F, El-Saadony MT, Khafaga AF, Batiha GE, et al. The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poult sci. 2021; 100(7): 1-12. https://doi.org/10.1016/j.psj.2021.101143
143. Ricke SC, Lee, SI, Kim SA, Park SH, Shi Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poult sci. 2020; 99(2): 670-677. https://doi.org/10.1016/j.psj.2019.12.018
144. Liu HY, Li X, Zhu X, Dong WG, Yang GQ. Soybean oligosaccharides attenuate odour compounds in excreta by modulating the caecal microbiota in broilers. Animal. 2021; 15(3): 1-8. https://doi.org/10.1016/j.animal.2020.100159
145. Liu L, Li Q, Yang Y, Guo A. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front Vet Sci. 2021; 8: 736739. https://doi.org/10.3389/fvets.2021.736739
146. Mamphogoro TP, Makete G, Modika KY, Kamutando CN. Probiotics as Feed Additives for Improved Animal Health and Nutrition: Books, Probiotics, Prebiotics, and Postbiotics in Human Health and Sustainable Food Systems. 2024. https://doi.org/10.5772/intechopen.1007406
147. Khan RU, Naz S. The applications of probiotics in poultry production. Worlds Poult Sci J. 2013; 69(3): 621-632. https://doi.org/10.1017/S0043933913000627
148. Mak PH, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. J Anim Sci Biotechnol. 2022; 13(1): 1-20. https://doi.org/10.1186/s40104-022-00786-0
Downloads
Issue
Section
License