Therapeutic Trial of Modified Levofloxacin (MOLVX) Against Induced Colorectal Aberrant Crypt Foci (Precancerous Tissue) in Mice
Main Article Content
Abstract
Colorectal cancer ranks as the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths globally. Fluoroquinolones, particularly Levofloxacin, have garnered interest for their potential anti-cancer effects, primarily due to their high affinity for metallic ions like copper. This affinity enhances their spectrum of activity and enables greater interaction with DNA in cancer cells, thereby inhibiting proliferation. Building on our prior work, where we synthesized copper-modified Levofloxacin (MOLVX), this study explores its therapeutic potential in treating precancerous colorectal lesions, known as Aberrant Crypt Foci (ACF), in a murine model. Sixty female Balb-C mice were randomized into six groups (n=10 per group). The first group served as a negative control and received no treatment. The remaining groups were administered azoxymethane (AOM) at 10 mg/kg body weight (BW) twice weekly to induce ACF. Among these, the second group acted as a positive control and received no further treatment. The third group was intraperitoneally administered doxorubicin at 16.2 mg/kg BW once a week for four weeks. The fourth group was treated with Levofloxacin at 25 mg/kg BW via oral lavage daily for four weeks. The final two groups received daily oral lavage treatments of MOLVX at doses of 5 mg/kg and 2.5 mg/kg BW for four weeks, respectively. Histopathological analysis of ACF tissues, stained with hematoxylin and eosin, revealed a statistically significant reduction (P<0.05) in ACF count among groups treated with MOLVX, doxorubicin, and Levofloxacin, compared to the positive control. Additionally, both MOLVX-treated groups showed a significant decrease (P<0.05) in proliferating cellular antigen (PCNA) levels. In conclusion, both MOLVX dosages (2.5 mg/kg and 5 mg/kg BW) demonstrated promising therapeutic efficacy against precancerous colorectal lesions in mice. However, the 5 mg/kg BW dose appeared to be more potent.
Downloads
Article Details
How to Cite
References
Eisenach PA, Soeth E, Röder C, Klöppel G, Tepel J, Kalthoff H, et al. Dipeptidase 1 (DPEP1) is a marker for the transition from low-grade to high-grade intraepithelial neoplasia and an adverse prognostic factor in colorectal cancer. Br J Cancer. 2013;109(3):694–703. https://doi.org/10.1038/bjc.2013.363
Harrison S, Benziger H. The molecular biology of colorectal carcinoma and its implications: a review. Surg. 2011;9(4):200–210. https://doi.org/10.1016/j.surge.2011.01.011
Issa JP. Colon cancer: it’s CIN or CIMP. Clin Cancer Res. 2008;14(19):5939–5940. https://doi.org/10.1158/1078-0432.CCR-08-1596
Worthley DL, Leggett BA. Colorectal cancer: molecular features and clinical opportunities. Clin Biochem Rev. 2010;31(2):31.
Lai C, Li S, Liu C Bin, Miyauchi Y, Suzawa M, Ho C, et al. Effective suppression of azoxymethane‐induced aberrant crypt foci formation in mice with citrus peel flavonoids. Mol Nutr Food Res. 2013;57(3):551–5. https://doi.org/10.1002/mnfr.201200606
Yamashita Y, Ashizawa T, Morimoto M, Hosomi J, Nakano H. Antitumor quinolones with mammalian topoisomerase II-mediated DNA cleavage activity. Cancer Res. 1992;52(10):2818–22.
Bobbarala V. A searches for antibacterial agents. BoD–Books on Demand; 2012. https://doi.org/10.5772/1085
Zolopa AR, Berger DS, Lampiris H, Zhong L, Chuck SL, Enejosa JV, et al. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV type 1: results of phase 2, randomized, controlled, dose-ranging clinical trial. J Infect Dis. 2010;201(6):814-822.
https://doi.org/10.1086/650698
Ozdek SC, Miller D, Flynn PM, Flynn Jr HW. In vitro antifungal activity of the fourth generation, fluoroquinolones against Candida isolates from human ocular infections. Ocul Immunol Inflamm. 2006;14(6):34`7–51. https://doi.org/10.1080/09273940600976953
Lancet JE, Ravandi F, Rickles RM, Cripe LD, Kantarjian HM, Giles FJ, et al. A phase Ib study of vosaroxin, an anticancer quinolone derivative, in patients with relapsed or refractory acute leukemia. Leukemia. 2011;25(12):1808–1814. https://doi.org/10.1038/leu.2011.157
Jamieson GC, Fox JA, Poi M, Strickland SA. Molecular and pharmacologic properties of the anticancer quinolone derivative vosaroxin: A new therapeutic agent for acute myeloid leukemia. Drugs. 2016;76(13):1245–1255. https://doi.org/10.1007/s40265-016-0614-z
Abdel‐Aal MAA, Abdel‐Aziz SA, Shaykoon MSA, Abuo‐Rahma GEA. Towards anticancer fluoroquinolones: A review article. Arch Pharm (Weinheim). 2019;352(7):1800376. https://doi.org/10.1002/ardp.201800376
Idowu T, Schweizer F. Ubiquitous nature of fluoroquinolones: the oscillation between antibacterial and anticancer activities. Antibiotics. 2017;6(4):26. https://doi.org/10.3390/antibiotics6040026
Brambilla G, Mattioli F, Robbiano L, Martelli A. Studies on genotoxicity and carcinogenicity of antibacterial, antiviral, antimalarial and antifungal drugs. Mutagenesis. 2012;27(4):387–413. https://doi.org/10.1093/mutage/ger094
Peacock M, Brem R, Macpherson P, Karran P. DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib. Nucleic Acids Res. 2014;42(22):13714–22. https://doi.org/10.1093/nar/gku1213
Smart DJ, Lynch AM. Evaluating the genotoxicity of topoisomerase-targeted antibiotics. Mutagenesis. 2011;27(3):359–65. https://doi.org/10.1093/mutage/ger089
Hawtin RE, Stockett DE, Byl JA, McDowell RS, Tan N, Arkin MR, et al. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. Plos one. 2010; 5(4):e10186. https://doi.org/10.1371/journal.pone.0010186
He X, Yao Q, Hall DD, Song Z, Fan D, You Y, et al. Levofloxacin exerts broad-spectrum anticancer activity via the regulation of THBS1, LAPTM5, SRD5A3, MFAP5, and P4HA1. Anticancer Drugs. 2022;33(1):e235-e246. https://doi.org/10.1097/CAD.0000000000001194
Barceló-Oliver M, García-Raso Á, Terrón Á, Molins E, Prieto MJ, Moreno V, et al. Ternary copper (II) complexes with hippurate derivatives and 1, 10-phenanthroline: Synthesis and biological activity. Inorganica Chim Acta. 2009;362(13):4744–4753. https://doi.org/10.1016/j.ica.2009.06.042
Chen CY, Chen QZ, Wang XF, Liu MS, Chen YF. Synthesis, characterization, DNA binding properties, and biological activities of a mixed ligand copper (II) complex of ofloxacin. Transit Met Chem. 2009;34(7):757–763. https://doi.org/10.1007/s11243-009-9259-z
Sorenson JR, Wangila GW. Co-treatment with copper compounds dramatically decreases toxicities observed with cisplatin cancer therapy and the anticancer efficacy of some copper chelates supports the conclusion that copper chelate therapy may be markedly more effective and less toxic than cisplatin therapy. Curr Med Chem. 2007;14(14):1499-1503. https://doi.org/10.2174/092986707780831041
Penman ID, El-Omar E, McGregor JR, Hillan KJ, O’Dwyer PJ, McColl KE. Omeprazole inhibits colorectal carcinogenesis induced by azoxymethane in rats. Gut. 1993;34(11):1559–1565. https://doi.org/10.1136/gut.34.11.1559
Sader HS, Huynh HK, Jones RN. Contemporary in vitro synergy rates for aztreonam combined with newer fluoroquinolones and β-lactams tested against gram-negative bacilli. Diagn Microbiol Infect Dis. 2003;47(3):547–550. https://doi.org/10.1016/S0732-8893(03)00158-5
Tarab MK, Khaleel AMN, Al-Rekabi FMK. Schiff base method characterization of the newly synthesized Modified Levofloxacin Complex (MOLVX) and its activity against the HRT-18 cell line isolated from a male patient with colorectal adenocarcinoma. Int J Health Sci (Qassim) [Internet]. 2022 Sep 13;6(S7 SE-Peer Review Articles):3922–50. Available from: https://sciencescholar.us/journal/index.php/ijhs/article/view/12689. https://doi.org/10.53730/ijhs.v6nS7.12689
Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticancer agents in mice, rats, hamsters, dogs, monkeys, and men. Cancer Chemother Rep. 1966;50(4):219-244.
Bird RP. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. 1987;37(2):147–151. https://doi.org/10.1016/0304-3835(87)90157-1
McLellan EA, Bird RP. Aberrant crypts: potential preneoplastic lesions in the murine colon. Cancer Res. 1988;48(21):6187–6192. https://doi.org/10.1093/carcin/13.9.1509
Pretlow TP, O’Riordan MA, Somich GA, Amini SB, Pretlow TG. Aberrant crypts correlate with tumor incidence in F344 rats treated with azoxymethane and phytate. Carcinogenesis. 1992;13(9):1509–1512. https://doi.org/10.1089/thy.2018.0312
Wang N, Li Y, Wei J, Pu J, Liu R, Yang Q, et al. TBX1 functions as a tumor suppressor in thyroid cancer by inhibiting the activities of the PI3K/AKT and MAPK/ERK pathways. Thyroid. 2019;29(3):378–394. https://doi.org/10.1089/thy.2018.0312
Yousef EM, Tahir MR, St-Pierre Y, Gaboury LA. MMP-9 expression varies according to molecular subtypes of breast cancer. BMC Cancer. 2014;14(1):609. https://doi.org/10.1186/1471-2407-14-609
Roeland EJ, Bohlke K, Baracos VE, Bruera E, Del Fabbro E, Dixon S, et al. Management of cancer cachexia: ASCO guideline. J Clin Oncol. 2020; 38(21), 2438-2453. https://doi.org/10.1200/JCO.20.00611
Venning FA, Claesson MH, Kissow H. The carcinogenic agent azoxymethane (AOM) enhances early inflammation-induced colon crypt pathology. J Cancer Sci Ther. 2013;5(11):377–383. https://doi.org/10.4172/1948-5956.1000229
Femia A Pietro, Dolara P, Caderni G. Mucin-depleted foci (MDF) in the colon of rats treated with azoxymethane (AOM) are useful biomarkers for colon carcinogenesis. Carcinogenesis. 2004;25(2):277–281. https://doi.org/10.1093/carcin/bgh005
Caderni G, Femia A Pietro, Giannini A, Favuzza A, Luceri C, Salvadori M, et al. Identification of mucin-depleted foci in the unsanctioned colon of azoxymethane-treated rats: correlation with carcinogenesis. Cancer Res. 2003;63(10):2388–2392.
Sødring M, Gunnes G, Paulsen JE. Detection and characterization of flat aberrant crypt foci (flat ACF) in the novel a/J min/+ mouse. Anticancer Res. 2016a;36(6):2745–2750.
Kwong LN, Dove WF. APC and its modifiers in colon cancer. Apc Proteins. 2009;85–106. https://doi.org/10.1007/978-1-4419-1145-2_8
Paulsen JE, Steffensen I-L, Løberg EM, Husøy T, Namork E, Alexander J. Qualitative and quantitative relationship between dysplastic aberrant crypt foci and tumorigenesis in the Min/+ mouse colon. Cancer Res. 2001;61(13):5010–5015.
Sødring M, Gunnes G, Paulsen JE. Spontaneous initiation, promotion, and progression of colorectal cancer in the novel A/JM in/+ mouse. Int J Cancer. 2016b;138(8):1936–1946. https://doi.org/10.1002/ijc.29928
Nowak R, Olech M, Nowacka N. Plant Polyphenols as Chemopreventive Agents. In: Watson RR, Preedy VR, Zibadi S, editors. Polyphenols in Human Health and Disease. Academic Press; 2014. p. 1289-1307. https://doi.org/10.1016/B978-0-12-398456-2.00086-4
Song M, Wu H, Wu S, Ge T, Wang G, Zhou Y, et al. The antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells by inducing mitochondrial dysfunction and oxidative damage. Biomed Pharmacother. 2016;84:1137-1143. https://doi.org/10.1016/j.biopha.2016.10.034
Dalhoff A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis. 2012;2012. https://doi.org/10.1155/2012/976273
Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med. 2013;5(192):192ra85-192ra85. https://doi.org/10.1126/scitranslmed.3006055
Suresh N, Nagesh HN, Sekhar KVGC, Kumar A, Shirazi AN, Parang K. Synthesis of novel ciprofloxacin analogs and evaluation of their antiproliferative effect on human cancer cell lines. Bioorg Med Chem Lett. 2013;23(23):6292–6295. https://doi.org/10.1016/j.bmcl.2013.09.077
Yu M, Li R, Zhang J. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer. Biochem Biophys Res Commun. 2016;471(4):639–645. https://doi.org/10.1016/j.bbrc.2016.02.072
Elsea SH, Osheroff N, Nitiss JL. Cytotoxicity of quinolones toward eukaryotic cells. Identification of topoisomerase II as the primary cellular target for the quinolone CP-115,953 in yeast. J Biol Chem. 1992;267(19):13150–13153. https://doi.org/10.1016/S0021-9258(18)42185-0
Melo S, Villanueva A, Moutinho C, Davalos V, Spizzo R, Ivan C, et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci. 2011;108(11):4394–439. https://doi.org/10.1073/pnas.1014720108
Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67(6):2456–2468. https://doi.org/10.1158/0008-5472.CAN-06-2698
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–531. https://doi.org/10.1038/nrg1379
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–838. https://doi.org/10.1038/nature03702
Heinen CD, Shivapurkar N, Tang Z, Groden J, Alabaster O. Microsatellite instability in aberrant crypt foci from human colons. Cancer Res. 1996;56(23):5339–5341.
Anderson GR, Brenner BM, Swede H, Chen N, Henry WM, Conroy JM, et al. Intrachromosomal genomic instability in human sporadic colorectal cancer measured by genome-wide allelotyping and inter-(simple sequence repeat) PCR. Cancer Res. 2001;61(22):8274–8283.
Luo L, Li B, Pretlow TP. DNA alterations in human aberrant crypt foci and colon cancers by random primed polymerase chain reaction. Cancer Res. 2003;63(19):6166–6169.
Bleiberg H, Morret M, Galand P. Correlation between [³Η] thymidine and proliferation cell nuclear antigen (PCNA)/cyclin indices in archival, formaldehyde–fixed human colorectal tissues. Eur J Cancer. 1993;29(3):400-403. https://doi.org/10.1016/0959-8049(93)90395-V
Georgescu CV, Saftoiu A, Georgescu CC, Ciurea R, Ciurea T. Correlations of proliferation markers, p53 expression and histological findings in colorectal carcinoma. J Gastrointest Liver Dis. 2007;16(2):133.
Zhang J-C, Wang Z-R, Cheng Y-J, Yang D-Z, Shi J-S, Liang A-L, et al. Expression of proliferating cell nuclear antigen and CD44 variant exon 6 in primary tumors and corresponding lymph node metastases of colorectal carcinoma with Dukes’ stage C or D. World J Gastroenterol WJG. 2003;9(7):1482. https://doi.org/10.3748/wjg.v9.i7.1482
Van Poznak C, Tan L, Panageas KS, Arroyo CD, Hudis C, Norton L, et al. Assessment of molecular markers of clinical sensitivity to single-agent taxane therapy for metastatic breast cancer. J Clin Oncol. 2002;20(9):2319–2326. https://doi.org/10.1200/JCO.2002.08.125
Wali RK, Roy HK, Kim YL, Liu Y, Koetsier JL, Kunte DP, et al. Increased microvascular blood content is an early event in colon carcinogenesis. Gut. 2005;54(5):654–60. https://doi.org/10.1136/gut.2004.056010
Qasim BJ, Ali HH, Hussein AG. Immunohistochemical expression of PCNA and CD34 in colorectal adenomas and carcinomas using specified automated cellular image analysis system: a clinicopathologic study. Saudi J Gastroenterol. 2012;18(4):268. https://doi.org/10.4103/1319-3767.98435
Yan-Fang A, Yong M, Jing-Hua L. The expressions of PCNA and Bcl-2 in colorectal adenoma and carcinoma and their clinicopathological and prognostic significance. Acta Academiae Medicinae Xuzhou. 2006;6:11-17.
Zi-Jian T, Li D. The Expression of p53and PCNA and their significance in colorectal neoplasm. J Basic Clin Oncol. 2001; 6:40–48.
AN Y, MENG Y, LU J. The expressions of PCNA and Bcl-2 in colorectal adenoma and carcinoma and their clinicopathological and prognostic significance. Acta Acad Med Xuzhou. 2006;
Kang G, Park CJ. Clinical Significance of PCNA and nm23 Expression in Invasive Colorectal Carcinoma. Journal of the Korean Society of Coloproctology. 2001;17(1):47-52.
Katada M, Sugiyama Y, Kunieda K, Saji S, Watanabe S, Watanabe K. Significance of cell proliferation and expression of mutant p53 protein for carcinogenesis of colorectal adenoma by immunohistochemical examination. Nippon Daicho Komonbyo Gakkai Zasshi. 1999;52(3):193–199. https://doi.org/10.3862/jcoloproctology.52.193
Shpitz B, Bomstein Y, Mekori Y, Cohen R, Kaufman Z, Grankin M, et al. Proliferating cell nuclear antigen as a marker of cell kinetics in aberrant crypt foci, hyperplastic polyps, adenomas, and adenocarcinomas of the human colon. Am J Surg. 1997;174(4):425–430. https://doi.org/10.1016/S0002-9610(97)00122-0
Bielicki D, Markiewski M, Wielondek M, Chosia M, Domagała W. PCNA defined proliferative activity of epithelial tumor cells in adenomas of the colon. Polish J Pathol Off J Polish Soc Pathol. 1995;46(3):151–154.
Yang H, Hsu P, Chan S, Lee J, Shin J, Chow N. Growth kinetics of colorectal adenoma-carcinoma sequence: an immunohistochemical study of proliferating cell nuclear antigen expression. Hum Pathol. 1996;27(10):1071–1076. https://doi.org/10.1016/S0046-8177(96)90286-5
Seo KW, Holt R, Jung Y-S, Rodriguez Jr CO, Chen X, Rebhun RB. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines. 2012; PLOS ONE, 7(8), e42960.https://doi.org/10.1371/journal.pone.0042960
Holtom PD, Pavkovic SA, Bravos PD, Patzakis MJ, Shepherd LE, Frenkel B. Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J Orthop Res. 2000;18(5):721–727. https://doi.org/10.1002/jor.1100180507
Miclau T, Edin ML, Lester GE, Lindsey RW, Dahners LE. Effect of ciprofloxacin on the proliferation of osteoblast‐like MG‐63 human osteosarcoma cells in vitro. J Orthop Res. 1998;16(4):509–512. https://doi.org/10.1002/jor.1100160417
Suaifan GARY, Mohammed AAM, Alkhawaja BA. Fluoroquinolones’ Biological activities against laboratory microbes and cancer cell lines. Molecules. 2022;27(5):1658. https://doi.org/10.3390/molecules27051658
Paulsen JE, Knutsen H, Ølstørn HB, Løberg EM, Alexander J. Identification of flat dysplastic aberrant crypt foci in the colon of azoxymethane‐treated A/J mice. Int J cancer. 2006;118(3):540–546. https://doi.org/10.1002/ijc.21416