Therapeutic Potential of Ginger Ethanolic Extract, Ginger-Loaded Chitosan Nanoparticles, and Chitosan Nanoparticles in Induced Type 2 Diabetes Mellitus in Dogss in Induced Type 2 Diabetes Mellitus in Dogs
Main Article Content
Abstract
Type 2 diabetes mellitus (T2DM) in dogs is a complex, multifactorial disease that is characterized by chronic hyperglycemia and insulin resistance. Current therapeutic options are often limited by side effects and variable efficacy, highlighting the need for more effective and safer treatments. This study assessed the therapeutic potential of ginger ethanolic extract (GEE), GEE-loaded chitosan nanoparticles (GEE-CNPs), and chitosan nanoparticles (CNPs) against T2DM in dogs. Twenty adult local breed mongrel dogs of both sexes, aged 7 to 13 months, with an average body weight of 10.4±0.76 kg, were included. The dogs were allocated into five groups (n=4 each): a non-diabetic, untreated Negative Control group, and four diabetic treatment groups, following T2DM induction via a single intravenous alloxan-nicotinamide injection. Each treatment group received daily oral administrations of either saline (Positive Control), GEE, GEE-CNPs, or CNPs at a dosage of 81.7 mg/kg BW over 45 days. Serum glycemic status (fasting serum glucose, insulin, and insulin resistance) was recorded at baseline and on days 7, 14, 21, 28, 35, 42, and 45 post-treatments. Additionally, on day 45, serum lipid profiles, liver function indicators (alanine aminotransferase [ALT], gamma-glutamyl transferase [GGT], and bilirubin), and markers of antioxidant status (glutathione [GSH] and malondialdehyde [MDA]) were assessed. The results showed that dogs in the diabetic Positive Control group exhibited hyperglycemia, dyslipidemia, liver dysfunction, and elevated oxidative stress markers, underscoring the severe impact of T2DM. Compared to the diabetic Positive Control, oral GEE, GEE-CNPs, and CNPs treatments significantly (P<0.05) improved fasting glucose levels, insulin sensitivity, lipid profiles (reduced total cholesterol, triglycerides, and LDL-C), liver function markers, and antioxidant status, indicating enhanced metabolic health and reduced oxidative stress. The findings suggest that GEE, GEE-CNPs, and CNPs offer potential as therapeutic agents for T2DM in dogs, demonstrating significant benefits in glycemic control, lipid normalization, liver function, and oxidative stress reduction. Further investigations with larger cohorts and longer durations are recommended to confirm these results and ascertain the clinical applicability and safety of these natural remedies in managing canine diabetes.
Received: 19 March 2024
Revised: 01 April 2024
Accepted: 08 July 2024
Published: 28 December 2024
Downloads
Article Details
How to Cite
References
O'Kell AL, Davison LJ. Etiology and Pathophysiology of Diabetes Mellitus in Dogs. Vet Clin North Am Small Anim Pract. 2023;53(3):493–510. https://doi.org/10.1016/j.cvsm.2023.01.004
Fracassi F. Diabetes Mellitus in Dogs. In: Côté E, Ettinger SJ, Feldman EC, editors. Ettinger's Textbook of Veterinary Internal Medicine. 9th ed. Philadelphia, PA: Elsevier; 2024. p. 1678-1703.
Behrend E, Holford A, Lathan P, Rucinsky R, Schulman R. 2018 AAHA Diabetes Management Guidelines for Dogs and Cats. J Am Anim Hosp Assoc. 2018;54:1–19. https://doi.org/10.5326/JAAHA-MS-6822
Niessen SJ, Powney S, Guitian J, Niessen AP, Pion PD, Shaw JA, et al. Evaluation of quality-of-life tool for dogs with diabetes mellitus, J Vet Intern Med. 2012;26(4):953-961. https://doi.org/10.1111/j.1939-1676.2012.00947.x
Aptekmann KP, Armstrong J, Coradini M, Rand J. Owner experiences in treating dogs and cats diagnosed with diabetes mellitus in the United States. J Am Anim Hosp Assoc. 2014 ;50(4):247-53. https://doi.org/10.5326/JAAHA-MS-6101
Reinhart JM, Graves TK. The Future of Diabetes Therapies: New Insulins and Insulin Delivery Systems, Glucagon-Like Peptide 1 Analogs, Sodium-Glucose Cotransporter Type 2 Inhibitors, and Beta Cell Replacement Therapy. Vet Clin North Am Small Anim Pract. 2023;53(3):675-690. https://doi.org/10.1016/j.cvsm.2023.01.003
Vaitaitis G, Webb T, Webb C, Sharkey C, Sharkey S, Waid D, et al. Canine diabetes mellitus demonstrates multiple markers of chronic inflammation including Th40 cell increases and elevated systemic-immune inflammation index, consistent with autoimmune dysregulation. Front Immunol. 2024;14:1319947. https://doi.org/10.3389/fimmu.2023.1319947
Chapman S. Canine diabetes mellitus. Vet Nur. 2019;10(7):360-363. 10.12968/vetn.2019.10.7.360
Suemanotham N, Phochantachinda S, Chatchaisak D, Sakcamduang W, Chansawhang A, Pitchakarn P et al. Antidiabetic effects of Andrographis paniculata supplementation on biochemical parameters, inflammatory responses, and oxidative stress in canine diabetes. Front. Pharmacol. 2023;14:1077228. https://doi.org/10.3389/fphar.2023.1077228
Suemanotham N, Photcharatinnakorn P, Chantong B, Buranasinsup S, Phochantachinda S, Sakcamduang W, et al. Curcuminoid supplementation in canine diabetic mellitus and its complications using proteomic analysis. Front Vet Sci. 2022;9:1057972. https://doi.org/10.3389/fvets.2022.1057972
Hassan H, Zaghawa A, Aly M, Kamr A, Nayel M, Mohamed M A-E-G, Abdelazeim A and Hassan B (2019). The effects of some medicinal plants with insulin on the inflammatory and metabolic responses in dogs with induced diabetes mellitus. Online J. Anim. Feed Res., 9(6): 212-224. https://doi.org/10.36380/scil.2019.ojafr30
Ogbu SO, Agwu KK, Asuzu IU. Gongronema latifolium delays gastric emptying of semi-solid meals in diabetic dogs. Afr. J. Tradit. Complement. Altern. Med. 2013;10(5):325–331. https://doi.org/10.4314/ajtcam.v10i5.17
Russell KR, Omoruyi FO, Pascoe KO, Morrison EY. Hypoglycaemic activity of Bixa orellana extract in the dog. Methods Find. Exp. Clin. Pharmacol.2008;30(4):301–305. https://doi.org/10.1358/mf.2008.30.4.1186073
Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–531. https://doi.org/10.1002/jcb.24402
Garza-Cadena C, Ortega-Rivera DM, Machorro-García G, Gonzalez-Zermeño EM, Homma-Dueñas D, Plata-Gryl M, et al. A comprehensive review on Ginger (Zingiber officinale) as a potential source of nutraceuticals for food formulations: Towards the polishing of gingerol and other present biomolecules. Food Chem. 2023;413:135629. https://doi.org/10.1016/j.foodchem.2023.135629
Zhang M, Zhao R, Wang D, Wang L, Zhang Q, Wei S, et al. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother Res. 2021;35(2):711-742. https://doi.org/10.1002/ptr.6858
Sonia TA, Sharma CP. An overview of natural polymers for oral insulin delivery. Drug Discov Today. 2012;17(13-14):784-792. https://doi.org/10.1016/j.drudis.2012.03.019
Priyanka DN, Prashanth KH, Tharanathan, RN. A review on potential anti-diabetic mechanisms of chitosan and its derivatives. Carbohydr Polym Technolo Appl. 2022;3:100188. https://doi.org/10.1016/j.carpta.2022.100188
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, et al. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int.J.Nanomed.2020;15:10215–10240. https://doi.org/10.2147/IJN.S285134
Salih SI, Al-Mutheffer EA, Mahdi AK, Al-Naimi RAS. Role of chitosan application in postoperative abdominal adhesions in rabbits. Iraqi J VetMed.2015;39(1):105–111. https://doi.org/10.30539/iraqijvm.v39i1.206
Majeed R, Mahmood AK. Protective effects of ginger ethanolic extract, chitosan nanoparticles, and ginger ethanolic extract-loaded chitosan nanoparticles on pancreatic DNA damage and histological changes in dogs with alloxan-nicotinamide induced type 2 diabetes. Adv. Anim. Vet.Sci.2024;12(1):32-43. https://doi.org/10.17582/journal.aavs/2024/12.1.32.43
Buishand F. Diabetes Mellitus in Dogs and Cats. MSD Veterinary Manual. Updated May 2024. Available from
Abbas AB, Abbas DA. Evaluation of lipid profile and inflammatory parameters in female diabetes type 2 induced rabbits treated with glimepride, bromocriptine and fluoxtein. Iraqi J. Vet. Med. 2019;42(2):97-104. https://doi.org/10.30539/iraqijvm.v42i2.305
Vattam KK, Raghavendran H, Murali MR, Savatey H, Kamarul T. Coadministration of alloxan and nicotinamide in rats produces biochemical changes in blood and pathological alterations comparable to the changes in type II diabetes mellitus. Hum. Expert. Toxicol.2016;35(8):893-901. https://doi.org/10.1177/0960327115608246
Sari DR, Ahmad FF, Djabir YY, Yulianty R. Breadfruit leaves extract (Artocarpus altilis) effect on pancreatic damage in diabetic type II animal model induced by alloxan– nicotinamide. Med. Clín. Práct. 2020;3(1):100099. https://doi.org/10.1016/j.mcpsp.2020.100099
Uchigata Y, Yamamoto H, Nagai H, Okamoto H. Effect of poly (ADP-ribose) synthetase inhibitor administration to rats before and after injection of alloxan and streptozotocin on islet proinsulin synthesis. Diabetes.1983;32(4):316-318. https://doi.org/10.2337/diab.32.4.316
Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia.2008;51(2):216-226. https://doi.org/10.1007/s00125-007-0886-7
Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J PharmPharmacol.2004;56:101-105. https://doi.org/10.1211/0022357022403
Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Antidiabetic and hypolipidaemic properties of ginger (zingiber officinale) in streptozotocin-induced diabetic rats. Br J Nut. 2006;96(4):660–666. https://doi.org/10.1079/BJN20061849
Son MJ, Miura Y, Yagasaki K. Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice. Cytotechnology. 2015;67:641. https://doi.org/10.1007/s10616-014-9730-3
Arzati MM, Honarvar NM, Saedisomeolia A, Anvari S, Effatpanah M, Arzati RM, et al. The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int J Endocrinol Metabol. 2017;15(4):e57927. 10.5812%2Fijem.57927
Khandouzi N, Farzad S, Asadollah R, Tayebeh R, Payam H, Mohsen MT. The effects of ginger on fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein AI and malondialdehyde in type 2 diabetic patients. Iran J Pharm Res. 2015;14(1):131-140.
Li Y, Tran VH, Duke CC, Roufogalis BD. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Med 2012;78(14):1549-1555. https://doi.org/10.1055/s-0032-1315041
Li Y, Tran VH, Duke CC, Roufogalis BD. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: A brief review. Evid Based Complement Alternat Med. 2012;2012:516870. https://doi.org/10.1155/2012/516870
Van B, Abdalla AN, Algarni AS, Khalid A, Zengin G, Aumeeruddy MZ, et al. Zingiber officinale Roscoe (Ginger) and its bioactive compounds in diabetes: A systematic review of clinical studies and insight of mechanism of action. Curr Med Chem. 2023;31(7):887-903. https://doi.org/10.2174/0929867330666230524122318
Mashhadi N, Moshref M, Tangey B, Gilor C, Papas KK, Williamson P, et al. Concise review: Canine diabetes mellitus as a translational model for innovative regenerative medicine approaches. Stem Cells Trans Med. 2019;8(5):450–455. https://doi.org/10.1002/sctm.18-0163
Young HY, Liao JC, Chang YS, Luo YL, Lu ML, Peng WH. Synergistic effect of ginger and nifedipine on human platelet aggregation: a study in hypertensive patients and normal volunteers. Am. J. Chin. Med. 2006;34:545–551. https://doi.org/10.1142/S0192415X06004089
Samad MB, Mohsin MNAB, Razu BA, Hossain MT, Mahzabeen S, Unnoor N, et al. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement Altern Med. 2017;17(1):395. https://doi.org/10.1186/s12906-017-1903-0
Guo W, Yi L, Zhou B, Li M. Chitosan modifies glycemic levels in people with metabolic syndrome and related disorders: meta-analysis with trial sequential analysis. Nutr J. 2020;19(1):130. https://doi.org/10.1186/s12937-020-00647-4
Othman SI, Alturki AM, Abu-Taweel GM, Altoom NG, Allam AA, Abdelmonem R. Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int J Biol Macromol. 2021;190:417-432. https://doi.org/10.1016/j.ijbiomac.2021.08.154
Sarkar S, Das D, Dutta P, Kalita J, Wann SB, Manna P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr Polym. 2020;247:116594. https://doi.org/10.1016/j.carbpol.2020.116594
Ojewole JAO. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytother Res. 2006;20(9):764-772. https://doi.org/10.1002/ptr.1952
Bhandari U, Kanojia R, Pillai KK. Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. J Ethnopharmacology. 2005;97(2):227–230. https://doi.org/10.1016/j.jep.2004.11.011
Al-Noory AS, Amreen AN, Hymoor S. Antihyperlipidemic effects of ginger extracts in alloxan-induced diabetes and propylthiouracil-induced hypothyroidism in (rats). Pharmacognosy Res. 2013;5:157-161. https://doi.org/10.4103/0974-8490.112419
Arablou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A, Djalali M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with Type 2 diabetes mellitus. Int J Food Sci Nutr. 2014;65(4):515-520. https://doi.org/10.3109/09637486.2014.880671
Hsieh YL, Yao HT, Cheng RS, Chiang MT. Chitosan reduces plasma adipocytokines and lipid accumulation in liver and adipose tissues and ameliorates insulin resistance in diabetic rats. J Med Food. 2012;15(5):453-60. https://doi.org/10.1089/jmf.2011.1882
Kong S, Ding C, Huang L, Bai Y, Xiao T, Guo J, et al. The effects of COST on the differentiation of 3T3-L1 preadipocytes and the mechanism of action. Saudi J Biol Sci. 2017;24(2):251-255. https://doi.org/10.1016/j.sjbs.2016.09.008
Madkor HR, Mansour SW, Ramadan G. Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycemia, dyslipidemia and oxidative stress in streptozotocin-nicotinamide diabetic rats. Br. J.Nutr.2011;105(8):1210–1217. https://doi.org/10.1017/S0007114510004927
Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24-38. https://doi.org/10.1002/jbt.10058
Shanmugam KR, Mallikarjuna K, Nishanth K, Kuo CH, Reddy KS. Protective effect of dietary ginger on antioxidant enzymes and oxidative damage in experimental diabetic rat tissues. Food Chem. 2011;124(4):1436-1442. https://doi.org/10.1016/j.foodchem.2010.07.104