Formulation, In-vitro Evaluation, and Animal Study of Levofloxacin/Tinidazole loaded pH-dependent In-Situ Gel for Ophthalmic Drug Delivery
Main Article Content
Abstract
Conventional ocular drug delivery forms (eye drops, eye ointments, and eye gels) possess poor bioavailability, less retention, and rapid precorneal discharge. In veterinary medicine, treating eye infections in animals like rabbits, dogs, and cats poses similar challenges. An in-situ gel drug delivery system (ISG-DDS) provides sustained action with a low formulation cost, which can be advantageous for veterinary applications. This study developed and characterised a pH-responsive ophthalmic ISG of levofloxacin and tinidazole with the potential to be used in both human and veterinary medicine. Carboxypol 980 (CBL-980) was used to make the ISG gel, and hydroxypropyl cellulose (HPC) changed the viscosity. Nine formulas of ISG were prepared. To find out about the drug content, clarity, gelling time, pH, viscosity, and stability of the product we got, we did a release study, as well as a DSC and FTIR visual evaluation. Albino rabbits (Oryctolagus cuniculus) were utilized to check for safety and ocular irritation. In Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), there was no significant interaction between the drug and the additives. This showed that the drug changed into an amorphous form. The results show that ISG was translucent, with a pH ranging from 5.4 ± 0.22 to 7.8 ± 0.26. The ISG formulas 1, 2, and 3 required 39, 36, and 34 minutes, respectively, for gelling and showed approximately 4-5 times more viscosity than all batches. The optimum formula (formula 1) showed the highest drug content, prolonged drug release up to 6 h, stability for 3 months, and safety to use for animals (no indication of inflammation). Tests done in the lab and on animals show that making a pH-dependent ISG that is loaded with Levofloxacin/Tinidazole and used to deliver drugs to the eye has a lot of potential. The in-vitro trials demonstrated a gradual release of the drug over time, a crucial factor in maintaining its presence on the eye's surface for an extended duration. This is critical for effectively treating eye infections. Animal studies further corroborated the findings, demonstrating their safety. Nevertheless, additional clinical trials are necessary to confirm these findings and evaluate the effectiveness of ISG in real-life situations.
Received: 07 July 2024
Revised: 15 July 2024
Accepted: 01 September 2024
Published: 28 December 2024
Downloads
Article Details
How to Cite
References
1. Hashmi MF, Gurnani B, Benson S, Price KL. Conjunctivitis (Nursing). In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023.pp. 1-26. PMID: 33760572.
2. Azari AA, Arabi A. Conjunctivitis: A Systematic Review. J Ophthalmic Vis Res. 2020;15(3):372-395.
https://doi.org/10.18502/jovr.v15i3.7456
3. Gilger BC. How study of naturally occurring ocular disease in animals improves ocular health globally. J Am Vet Med Assoc. 2022; 260(15):1887-1893. https://doi.org/10.2460/javma.22.08.0383
4. Gaudana R, Ananthula HK, Parenky A, Mitra AS. Ocular drug delivery. The AAPS journal. 2010; 12: 348-360. https://doi.org/10.1208/s12248-010-9183-3
5. Sarisaltik D, Teksin ZS. Bioavailability file: levofloxacin. Fabad Journal of Pharmaceutical Sciences. 2007; 32(4): 197. https://www.proquest.com/scholarly-journals/bioavailability-file-levofloxacin/docview/1027218297/se-2.
6. Sawyer PR, Brogden RN, Pinder RM, Speight TM, Avery GS. Tinidazole: A Review of its Antiprotozoal Activity and Therapeutic Efficacy. Drugs.1976;11:423-440. https://doi.org/10.2165/00003495-197611060-00003
7. Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic Drug Delivery Systems for Antibiotherapy-A Review. Pharmaceutics. 2018; 10(1):10. https://doi.org/10.3390/pharmaceutics10010010
8. Salminen L. Systemic absorption of topically applied ocular drugs in humans. J Ocul Pharmacol Ther. 1990; 6(3): 243-249.
https://doi.org/10.1089/jop.1990.6.243
9. Zhu H, Chauhan A. Effect of viscosity on tear drainage and ocular residence time. Optom Vis Sci. 2008; 85(8): E715-E725.
https://doi.org/10.1097/OPX.0b013e3181824dc4
10. Singh TRR, Jones D. Advances in ophthalmic drug delivery. J Pharm Pharmacol.2014;66(4):487-489.https://doi.org/10.1111/jphp.12249
11. Kalaria VJ, Saisivam S, Alshishani A, Aljariri Alhesan JS, Chakraborty S, RahamathullaM. Design and evaluation ofin situgel eye drops containing nanoparticles of GemifloxacinMesylate. Drug Deliv. 2023;30(1):2185180.https://doi.org/10.1080/10717544.2023.2185180
12. Sun J, Zhou Z. A novel ocular delivery of brinzolamide based on gellan gum: In vitro and in vivo evaluation. Drug Des Devel Ther. 2022;16:4109-4110. https://doi.org/10.2147/DDDT.S153405
13. Eram F, Vivek. In-vivo Evaluation and Characterization of Novel In-Situ Gelling System as Controlled Delivery System Containing Ciprofloxacin for Ocular Drug Delivery. J Drug Deliv Ther. 2020; 10(5-s):32-39. https://doi.org/10.22270/jddt.v10i5-s.4421
14. Ullah I, Ali E, Fakhar-ud D. Bioavailability of Antibiotics and Their Toxicity. In: Hashmi M (eds) Antibiotics and Antimicrobial Resistance Genes. Emerging Contaminants and Associated Treatment Technologies. Switzerland: Springer;2020. P. 211-238. Cham.
https://doi.org/10.1007/978-3-030-40422-2_10
15. Kumar D, Jain N, Gulati N, Nagaich U. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 2013;4(1):9-17. https://doi.org/10.4103/2231-4040.107495
16. Almajidi YQ, Maraie NK, Raauf AMR. Modified solid in oil nanodispersion containing vemurafenib-lipid complex- in vitro/ in vivo study. F1000Res. 2022;11:841.https://doi.org/10.12688/f1000research.123041.2
17. Sabry HS, Al-Shohani ADH, Mahmood SZ. Formulation and evaluation of levofloxacin and betamethasone ophthalmic emulgel. J Pharm Bioallied Sci. 2021;13(2):205-211. https://doi.org/10.4103/jpbs.JPBS_338_20
18. Maraie NK, Almajidi YQ. Application of nanoemulsion technology for preparation and evaluation of intranasal mucoadhesive nano-in-situ gel for ondansetron HCl. JGPT. 2018; 10 (03): 431-42. https://api.semanticscholar.org/CorpusID:56000761
https://doi.org/10.32947/ajps.v17i2.47
19. Ranch KM, Maulvi FA, Naik MJ, Koli AR, Parikh RK, Shah DO. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: In vitro, ex vivo, in vivo and human studies. Int J Pharm. 2019; 554: 264-275.
https://doi.org/10.1016/j.ijpharm.2018.11.016
20. Yang H, Ding S, Fan D, Zhu Z, Fan Y, Li J,et al . Design and evaluation of a dual-sensitive in situ gel for the controlled release of pranoprofen. AAPS PharmSciTech. 2024;25(2):35. https://doi.org/10.1208/s12249-024-02748-3
21. Gaballa SA, Kompella UB, Elgarhy O, Alqahtani AM, Pierscionek B, AlanyRG, et al. Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv Transl Res. 2021;11(3):866-893. 10.1007/s13346-020-00843-z https://doi.org/10.1007/s13346-020-00843-z
22. Almajidi YQ, Maraie NK, Raauf AM. Utilization of solid in oil nanodispersion to prepare a topical vemurafenib as potential delivery system for skin melanoma. Appl Nanosci. 2023; 13(4): 2845-2856. https://doi.org/10.1007/s13204-021-02158-y
23. Allam, A, Elsabahy M, El Badry M, Eleraky NE et al., Betaxolol‐loaded niosomes integrated within pH‐sensitive in situ forming gel for management of glaucoma. Int J Pharm.2021;598:120380.https://doi.org/10.1016/j.ijpharm.2021.120380
24. Shaikh DA, Momin MM. Formulation and evaluation of ion-triggered in situ gel for effective ocular delivery of ciprofloxacin HCl and olopatadine HCl in combination. Drug Deliv Lett. 2024;14(1):49-66.https://doi.org/10.2174/0122103031267809231128111259
25. Bashir SJ, Ong MWS, Maibach HI. "In vivo irritation." In: Barel AO, Paye M, Maibach HI. Handbook of Cosmetic Science and Technology. 4th ed. New York, USA: Marcel Dekker Inc.; 2001. .107-118.
26. Rignall A. ICHQ1A(R2) Stability Testing of New Drug Substance and Product and ICHQ1C Stability Testing of New Dosage Forms. ICH Quality Guidelines; 2017. p. 3-44. https://doi.org/10.1002/9781118971147.ch1
27. Balasingam R, Khan A, Thinakaran R. Formulation of in Situ Gelling System for Ophthalmic Delivery of Erythromycin. Int J Students' Res Technol Manag. 2017; 5(3): 01-08. https://doi.org/10.18510/ijsrtm.2017.531
28. Tagalpallewar A, Rai P, Polshettiwar S, Manish W, Baheti A. Formulation, optimization and evaluation of ion triggered ophthalmic in situ gel. J Pharm Res Int. 2021;33(28A):58-77.https://doi.org/10.9734/jpri/2021/v33i28A31511
29. Gözcü S, Polat HK, Gültekin Y, Ünal S, Karakuyu NF, Şafak EK, et al. Formulation of hesperidin-loaded in situ gel forocular drug delivery: a comprehensive study. J Sci Food Agric. 2024; 104(10): 5846-5859. https://doi.org/10.1002/jsfa.13407
30. Moseson DE, Lynne ST. The application of temperature-composition phase diagrams for hot melt extrusion processing of amorphous solid dispersions to prevent residual crystallinity. Int J Pharm. 2018; 553.1-2:454-466. https://doi.org/10.1016/j.ijpharm.2018.10.055
31. Saadallah MN, Yasir QA, Asgar A. Binary Ethosomal Gel for Enhanced Transdermal Delivery of Tazarotene: Development, Refinement, in vitro Evaluation, and Skin Penetration Investigations. AJMS. 2023; 5.1S: S42-50. https://doi.org/10.54133/ajms.v5i1S.288
32. Gupta B, Mishra V, Gharat S, Momin M, Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals (Basel). 2021;14(11):1201.https://doi.org/10.3390/ph14111201
33. Perminaite K, Marksa M, Stančiauskaitė M, Juknius T, Grigonis A, Ramanauskiene K. Formulation of Ocular In Situ Gels with Lithuanian Royal Jelly and Their Biopharmaceutical Evaluation In Vitro. Molecules. 2021; 26(12):3552.
https://doi.org/10.3390/molecules26123552
34. Szalai B, Jójárt-Laczkovich O, Kovács A, Berkó S, Balogh GT, Katona G,et al. Design and optimization of in situ gelling mucoadhesive eye drops containing dexamethasone. Gels. 2022;8(9):561.https://doi.org/10.3390/gels8090561
35. Sawant D, Dandagi PM, Gadad AP. Formulation and evaluation of sparfloxacin emulsomes-loaded thermosensitive in situ gel for ophthalmic delivery. J Sol-Gel Sci Technol. 2016;77:654-665. https://doi.org/10.1007/s10971-015-3897-8
36. Padmasri B, Nagaraju R, Prasanth D. A comprehensive review on in situ gels. Int J Appl Pharm. 2020;12(6):24-33.
https://doi.org/10.22159/ijap.2020v12i6.38918
37. Kouchak M, Mahmoodzadeh M, Farrahi F. Designing of a pH-Triggered Carbopol®/HPMC In Situ Gel for Ocular Delivery of Dorzolamide HCl: In Vitro, In Vivo, and Ex Vivo Evaluation. AAPS PharmSciTech. 2019; 20: 1-8.https://doi.org/10.1208/s12249-019-1431-y
38. Anroop BN, Jigar S, Shery J, Bandar EA, Sreeharsha N, Morsy MA, Gupta S et al. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections. PloS one. 2021; 16(3): e0248857.
https://doi.org/10.1371/journal.pone.0248857
39. Shaikh, Darakhshan A, Munira MM. Formulation and evaluation of ion-triggered in situ gel for effective ocular delivery of ciprofloxacin HCl and olopatadine HCl in combination. Drug Deliv Lett. 2024; 14(1): 49-66.
https://doi.org/10.2174/0122103031267809231128111259
40. Dasankoppa, Fatima S, Solankiy P, Sholapur HN, Hasanpasha N, Vilas GJ, Vinuta MS et al. Design, formulation, and evaluation of in situ gelling ophthalmic drug delivery system comprising anionic and nonionic polymers. i- JMR. 2017; 10(3):323-330.
https://doi.org/10.4103/kleuhsj.kleuhsj_131_17
41. Jokubaite M, Marksa M, Ramanauskiene K. Application of Poloxamer for In Situ Eye Drop Modeling by Enrichment with Propolis and Balsam Poplar Buds Phenolic Compounds. Gels. 2024; 10(3):161.https://doi.org/10.3390/gels10030161
42. Patel N, Thakkar V, Metalia V, Baldaniya L, Gandhi T, Gohel M. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept. Drug Dev Ind Pharm.2016; 42(9), 1406-1423.