Formulation, In-vitro Evaluation, and Animal Study of Levofloxacin/Tinidazole loaded pH-dependent In-Situ Gel for Ophthalmic Drug Delivery

Main Article Content

Hassanien S Taghi
Esraa G Jabar
Yasir Q Almajidi

Abstract





Conventional ocular drug delivery forms (eye drops, eye ointments, and eye gels) possess poor bioavailability, less retention, and rapid precorneal discharge. In veterinary medicine, treating eye infections in animals like rabbits, dogs, and cats poses similar challenges. An in-situ gel drug delivery system (ISG-DDS) provides sustained action with a low formulation cost, which can be advantageous for veterinary applications. This study developed and characterised a pH-responsive ophthalmic ISG of levofloxacin and tinidazole with the potential to be used in both human and veterinary medicine. Carboxypol 980 (CBL-980) was used to make the ISG gel, and hydroxypropyl cellulose (HPC) changed the viscosity. Nine formulas of ISG were prepared. To find out about the drug content, clarity, gelling time, pH, viscosity, and stability of the product we got, we did a release study, as well as a DSC and FTIR visual evaluation. Albino rabbits (Oryctolagus cuniculus) were utilized to check for safety and ocular irritation. In Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), there was no significant interaction between the drug and the additives. This showed that the drug changed into an amorphous form. The results show that ISG was translucent, with a pH ranging from 5.4 ± 0.22 to 7.8 ± 0.26. The ISG formulas 1, 2, and 3 required 39, 36, and 34 minutes, respectively, for gelling and showed approximately 4-5 times more viscosity than all batches. The optimum formula (formula 1) showed the highest drug content, prolonged drug release up to 6 h, stability for 3 months, and safety to use for animals (no indication of inflammation). Tests done in the lab and on animals show that making a pH-dependent ISG that is loaded with Levofloxacin/Tinidazole and used to deliver drugs to the eye has a lot of potential. The in-vitro trials demonstrated a gradual release of the drug over time, a crucial factor in maintaining its presence on the eye's surface for an extended duration. This is critical for effectively treating eye infections. Animal studies further corroborated the findings, demonstrating their safety. Nevertheless, additional clinical trials are necessary to confirm these findings and evaluate the effectiveness of ISG in real-life situations‎‎‎.






 

Downloads

Download data is not yet available.

Article Details

How to Cite
Formulation, In-vitro Evaluation, and Animal Study of Levofloxacin/Tinidazole loaded pH-dependent In-Situ Gel for Ophthalmic Drug Delivery. (2024). The Iraqi Journal of Veterinary Medicine, 48(2), 88-97. https://doi.org/10.30539/0tg7mb26
Section
Articles

How to Cite

Formulation, In-vitro Evaluation, and Animal Study of Levofloxacin/Tinidazole loaded pH-dependent In-Situ Gel for Ophthalmic Drug Delivery. (2024). The Iraqi Journal of Veterinary Medicine, 48(2), 88-97. https://doi.org/10.30539/0tg7mb26

References

‎1.‎ Hashmi MF, Gurnani B, Benson S, Price KL. Conjunctivitis ‎‎(Nursing). In: StatPearls. StatPearls Publishing, Treasure Island ‎‎(FL); 2023.pp. 1-26. PMID: 33760572.‎

‎2.‎ Azari AA, Arabi A. Conjunctivitis: A Systematic Review. J ‎Ophthalmic Vis Res. 2020;15(3):372-395.

https://doi.org/10.18502/jovr.v15i3.7456

‎3.‎ Gilger BC. How study of naturally occurring ocular disease in ‎animals improves ocular health globally. J Am Vet Med Assoc. 2022; ‎‎260(15):1887-1893. https://doi.org/10.2460/javma.22.08.0383

‎4.‎ Gaudana R, Ananthula HK, Parenky A, Mitra AS. Ocular drug ‎delivery. The AAPS journal. 2010; 12: 348-360. ‎‏https://doi.org/10.1208/s12248-010-9183-3

‎5.‎ Sarisaltik D, Teksin ZS. Bioavailability file: levofloxacin. Fabad ‎Journal of Pharmaceutical Sciences. 2007; 32(4): 197. ‎https://www.proquest.com/scholarly-journals/bioavailability-‎file-levofloxacin/docview/1027218297/se-2.‎

‎6.‎ Sawyer PR, Brogden RN, Pinder RM, Speight TM, Avery GS. ‎Tinidazole: A Review of its Antiprotozoal Activity and Therapeutic ‎Efficacy. Drugs.1976;11:423-440. https://doi.org/10.2165/00003495-197611060-00003

‎7.‎ Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic Drug ‎Delivery Systems for Antibiotherapy-A Review. Pharmaceutics. ‎‎2018; 10(1):10. https://doi.org/10.3390/pharmaceutics10010010

‎8.‎ Salminen L. Systemic absorption of topically applied ocular drugs in ‎humans. J Ocul Pharmacol Ther. 1990; 6(3): 243-249.

https://doi.org/10.1089/jop.1990.6.243

‎9.‎ Zhu H, Chauhan A. Effect of viscosity on tear drainage and ocular ‎residence time. Optom Vis Sci. 2008; 85(8): E715-E725.

https://doi.org/10.1097/OPX.0b013e3181824dc4

‎10.‎ Singh TRR, Jones D. Advances in ophthalmic drug delivery. J Pharm ‎Pharmacol.2014;66(4):487-‎‎489.https://doi.org/10.1111/jphp.12249

‎11.‎ Kalaria VJ, Saisivam S, Alshishani A, Aljariri Alhesan JS, Chakraborty ‎S, RahamathullaM. Design and evaluation ofin situgel eye drops ‎containing nanoparticles of GemifloxacinMesylate. Drug Deliv. ‎‎2023;30(1):2185180.https://doi.org/10.1080/10717544.2023.2185180

‎12.‎ Sun J, Zhou Z. A novel ocular delivery of brinzolamide based on ‎gellan gum: In vitro and in vivo evaluation. Drug Des Devel Ther. ‎‎2022;16:4109-4110. https://doi.org/10.2147/DDDT.S153405

‎13.‎ Eram F, Vivek. In-vivo Evaluation and Characterization of Novel In-‎Situ Gelling System as Controlled Delivery System Containing ‎Ciprofloxacin for Ocular Drug Delivery. J Drug Deliv Ther. 2020; ‎‎10(5-s):32-39. https://doi.org/10.22270/jddt.v10i5-s.4421

‎14.‎ Ullah I, Ali E, Fakhar-ud D. Bioavailability of Antibiotics and Their ‎Toxicity. In: Hashmi M (eds) Antibiotics and Antimicrobial ‎Resistance Genes. Emerging Contaminants and Associated ‎Treatment Technologies. Switzerland: Springer;2020. P. 211-238. ‎Cham.

https://doi.org/10.1007/978-3-030-40422-2_10

‎15.‎ Kumar D, Jain N, Gulati N, Nagaich U. Nanoparticles laden in situ ‎gelling system for ocular drug targeting. J Adv Pharm Technol Res. ‎‎2013;4(1):9-17. https://doi.org/10.4103/2231-4040.107495

‎16.‎ Almajidi YQ, Maraie NK, Raauf AMR. Modified solid in oil ‎nanodispersion containing vemurafenib-lipid complex- in vitro/ in ‎vivo study. F1000Res. 2022;11:841.https://doi.org/10.12688/f1000research.123041.2

‎17.‎ Sabry HS, Al-Shohani ADH, Mahmood SZ. Formulation and ‎evaluation of levofloxacin and betamethasone ophthalmic emulgel. J ‎Pharm Bioallied Sci. 2021;13(2):205-211. https://doi.org/10.4103/jpbs.JPBS_338_20

‎18.‎ Maraie NK, Almajidi YQ. Application of nanoemulsion technology ‎for preparation and evaluation of intranasal mucoadhesive nano-‎in-situ gel for ondansetron HCl. JGPT. 2018; 10 (03): 431-42. ‎‏https://api.semanticscholar.org/CorpusID:56000761‎

https://doi.org/10.32947/ajps.v17i2.47

‎19.‎ Ranch KM, Maulvi FA, Naik MJ, Koli AR, Parikh RK, Shah DO. ‎Optimization of a novel in situ gel for sustained ocular drug ‎delivery using Box-Behnken design: In vitro, ex vivo, in vivo and ‎human studies. Int J Pharm. 2019; 554: 264-275.

https://doi.org/10.1016/j.ijpharm.2018.11.016

‎20.‎ Yang H, Ding S, Fan D, Zhu Z, Fan Y, Li J,et al . Design and evaluation of ‎a dual-sensitive in situ gel for the controlled release of pranoprofen. ‎AAPS PharmSciTech. 2024;25(2):35. https://doi.org/10.1208/s12249-024-02748-3

‎21.‎ Gaballa SA, Kompella UB, Elgarhy O, Alqahtani AM, Pierscionek B, ‎AlanyRG, et al. Corticosteroids in ophthalmology: drug delivery ‎innovations, pharmacology, clinical applications, and future ‎perspectives. Drug Deliv Transl Res. 2021;11(3):866-893. ‎‎10.1007/s13346-020-00843-z https://doi.org/10.1007/s13346-020-00843-z

‎22.‎ Almajidi YQ, Maraie NK, Raauf AM. Utilization of solid in oil ‎nanodispersion to prepare a topical vemurafenib as potential ‎delivery system for skin melanoma. Appl Nanosci. 2023; 13(4): ‎‎2845-2856. https://doi.org/10.1007/s13204-021-02158-y

‎23.‎ Allam, A, Elsabahy M, El Badry M, Eleraky NE et al., Betaxolol‐loaded ‎niosomes integrated within pH‐sensitive in situ forming gel for ‎management of glaucoma. Int J Pharm.2021;598:120380.https://doi.org/10.1016/j.ijpharm.2021.120380

‎24.‎ Shaikh DA, Momin MM. Formulation and evaluation of ion-triggered ‎in situ gel for effective ocular delivery of ciprofloxacin HCl and ‎olopatadine HCl in combination. Drug Deliv Lett. 2024;14(1):49-‎‎66.https://doi.org/10.2174/0122103031267809231128111259

‎25.‎ Bashir SJ, Ong MWS, Maibach HI. "In vivo irritation." In: Barel AO, ‎Paye M, Maibach HI. Handbook of Cosmetic Science and ‎Technology. 4th ed. New York, USA: Marcel Dekker Inc.; 2001. .107-‎‎118.‎‏

‎26.‎ Rignall A. ICHQ1A(R2) Stability Testing of New Drug Substance and ‎Product and ICHQ1C Stability Testing of New Dosage Forms. ICH ‎Quality Guidelines; 2017. p. 3-44.‎ https://doi.org/10.1002/9781118971147.ch1

‎27.‎ Balasingam R, Khan A, Thinakaran R. Formulation of in Situ Gelling ‎System for Ophthalmic Delivery of Erythromycin. Int J Students' ‎Res Technol Manag. 2017; 5(3): 01-08. ‎https://doi.org/10.18510/ijsrtm.2017.531

‎28.‎ Tagalpallewar A, Rai P, Polshettiwar S, Manish W, Baheti A. ‎Formulation, optimization and evaluation of ion triggered ‎ophthalmic in situ gel. J Pharm Res Int. 2021;33(28A):58-‎‎77.https://doi.org/10.9734/jpri/2021/v33i28A31511

‎29.‎ Gözcü S, Polat HK, Gültekin Y, Ünal S, Karakuyu NF, Şafak EK, et al. ‎Formulation of hesperidin-loaded in situ gel forocular drug ‎delivery: a comprehensive study. J Sci Food Agric. 2024; 104(10): ‎‎5846-5859. https://doi.org/10.1002/jsfa.13407

‎30.‎ Moseson DE, Lynne ST. The application of temperature-‎composition phase diagrams for hot melt extrusion processing of ‎amorphous solid dispersions to prevent residual crystallinity. Int J ‎Pharm. 2018; 553.1-2:454-466. https://doi.org/10.1016/j.ijpharm.2018.10.055

‎31.‎ Saadallah MN, Yasir QA, Asgar A. Binary Ethosomal Gel for ‎Enhanced Transdermal Delivery of Tazarotene: Development, ‎Refinement, in vitro Evaluation, and Skin Penetration ‎Investigations. AJMS. 2023; 5.1S: S42-50.‎‏‎ https://doi.org/10.54133/ajms.v5i1S.288

‎32.‎ Gupta B, Mishra V, Gharat S, Momin M, Omri A. Cellulosic polymers ‎for enhancing drug bioavailability in ocular drug delivery systems. ‎Pharmaceuticals (Basel). 2021;14(11):1201.https://doi.org/10.3390/ph14111201

‎33.‎ Perminaite K, Marksa M, Stančiauskaitė M, Juknius T, Grigonis A, ‎Ramanauskiene K. Formulation of Ocular In Situ Gels with ‎Lithuanian Royal Jelly and Their Biopharmaceutical Evaluation In ‎Vitro. Molecules. 2021; 26(12):3552.

https://doi.org/10.3390/molecules26123552

‎34.‎ Szalai B, Jójárt-Laczkovich O, Kovács A, Berkó S, Balogh GT, Katona ‎G,et al. Design and optimization of in situ gelling mucoadhesive eye ‎drops containing dexamethasone. Gels. 2022;8(9):561.https://doi.org/10.3390/gels8090561

‎35.‎ Sawant D, Dandagi PM, Gadad AP. Formulation and evaluation of ‎sparfloxacin emulsomes-loaded thermosensitive in situ gel for ‎ophthalmic delivery. J Sol-Gel Sci Technol. 2016;77:654-665. https://doi.org/10.1007/s10971-015-3897-8

‎36.‎ Padmasri B, Nagaraju R, Prasanth D. A comprehensive review on in ‎situ gels. Int J Appl Pharm. 2020;12(6):24-33. ‎‎

https://doi.org/10.22159/ijap.2020v12i6.38918

‎37.‎ Kouchak M, Mahmoodzadeh M, Farrahi F. Designing of a pH-‎Triggered Carbopol®/HPMC In Situ Gel for Ocular Delivery of ‎Dorzolamide HCl: In Vitro, In Vivo, and Ex Vivo Evaluation. AAPS ‎PharmSciTech. 2019; 20: 1-8.https://doi.org/10.1208/s12249-019-1431-y

‎38.‎ Anroop BN, Jigar S, Shery J, Bandar EA, Sreeharsha N, Morsy MA, ‎Gupta S et al. Experimental design, formulation and in vivo ‎evaluation of a novel topical in situ gel system to treat ocular ‎infections. PloS one. 2021; 16(3): e0248857. ‎‏‎

https://doi.org/10.1371/journal.pone.0248857

‎39.‎ Shaikh, Darakhshan A, Munira MM. Formulation and evaluation of ‎ion-triggered in situ gel for effective ocular delivery of ciprofloxacin ‎HCl and olopatadine HCl in combination. Drug Deliv Lett. 2024; ‎‎14(1): 49-66.‎‏‎

https://doi.org/10.2174/0122103031267809231128111259

‎40.‎ Dasankoppa, Fatima S, Solankiy P, Sholapur HN, Hasanpasha N, ‎Vilas GJ, Vinuta MS et al. Design, formulation, and evaluation of in ‎situ gelling ophthalmic drug delivery system comprising anionic ‎and nonionic polymers. i- JMR. 2017; 10(3):323-330.‎‏‎

https://doi.org/10.4103/kleuhsj.kleuhsj_131_17

‎41.‎ Jokubaite M, Marksa M, Ramanauskiene K. Application of Poloxamer ‎for In Situ Eye Drop Modeling by Enrichment with Propolis and ‎Balsam Poplar Buds Phenolic Compounds. Gels. 2024; 10(3):161.https://doi.org/10.3390/gels10030161

‎42.‎ Patel N, Thakkar V, Metalia V, Baldaniya L, Gandhi T, Gohel M. ‎Formulation and development of ophthalmic in situ gel for the ‎treatment ocular inflammation and infection using application of ‎quality by design concept. Drug Dev Ind Pharm.2016; 42(9), 1406-‎‎1423.

https://doi.org/10.3109/03639045.2015.1137306

Similar Articles

You may also start an advanced similarity search for this article.