Antibacterial Activity of Lactiplantibacillus plantarum‎ from Dairy Products ‎Against Some ‎Foodborne Bacteria

Main Article Content

Doaa A Qasim
Inam J Lafta
Oluyinka A Iyiola

Abstract





Lactiplantibacillus plantarum‎, one of lactic acid bacteria (LAB), is found in various foods, ‎‎including dairy products, meat, and vegetables, and most of these bacteria offer beneficial ‎‎effects to humans and animals as potential probiotics with broad-spectrum antimicrobial ‎‎activities. The aim of this study was evaluating the antibacterial efficacy of L. plantarum‎ ‎against ‎some foodborne bacteria isolated from dairy products. This research involved 34 dairy ‎products, ‎including local and imported milk, cheese, and yogurt sold locally in Baghdad ‎province, Iraq, during May ‎‎2022. For the isolation of L. plantarum‎, a special medium called ‎MRS (de Man Rogosa and ‎Sharpe) was applied. Colonies were purified and identified by routine ‎bacteriological methods, ‎Vitek2 system, and confirmed by the polymerase chain reaction (PCR) ‎targeting the ‎16S rRNA‎ ‎gene followed by the amplicon sequencing. Other aerobic bacteria ‎contaminating dairy products ‎were also isolated onto sterile selective media specific for each ‎microorganism, and the isolates ‎were identified by routine diagnostics tests followed by ‎verification with Vitek2 system. Then, ‎the culture supernatant of L. plantarum‎ was tested for its ‎antagonistic activity toward foodborne ‎bacteria by the use of agar well diffusion assay. The ‎findings showed the isolation of 2 L. plantarum‎‎, 3 Pseudomonas aeruginosa, 4 Escherichia coli, ‎one isolate of Bacillus subtilis, and ‎another Staphylococcus hominis. The filtered supernatant of ‎L. plantarum‎ was significantly ‎efficient in inhibiting the growth of the above bacteria. Each of E. coli and B. subtilis‎ revealed ‎zones of inhibition of 36 and 38 mm in diameter, respectively, ‎while P. aeruginosa‎ and S. hominis had inhibition zones diameters of 27 and 29 mm, ‎respectively. This suggests that the L. plantarum‎‎ supernatant possesses a broad-spectrum ‎activity against foodborne bacteria. To ‎conclude, locally made dairy products can hold different ‎contaminating bacteria, which can be ‎eliminated by using probiotics, such as L. plantarum‎, to ‎avoid foodborne diseases onset‎.





Downloads

Download data is not yet available.

Article Details

How to Cite
Antibacterial Activity of Lactiplantibacillus plantarum‎ from Dairy Products ‎Against Some ‎Foodborne Bacteria. (2023). The Iraqi Journal of Veterinary Medicine, 47(1), 44-51. https://doi.org/10.30539/ijvm.v47i1.1500
Section
Articles

How to Cite

Antibacterial Activity of Lactiplantibacillus plantarum‎ from Dairy Products ‎Against Some ‎Foodborne Bacteria. (2023). The Iraqi Journal of Veterinary Medicine, 47(1), 44-51. https://doi.org/10.30539/ijvm.v47i1.1500

References

Liu B, Yang M, Qi B, Chen X, Su Z, Wan Y. Optimizing l-(+)-lactic acid production by thermophile ‎Lactobacillus plantarum‎‎ As. 1.3 using alternative nitrogen sources with response surface method. ‎Biochem. Eng. J. 2010; 52(2): 212–219.

https://doi.org/10.1016/j.bej.2010.08.013

‎Zheng J, Wittouck S, Salvetti E, Franz C, Harris H, Mattarelli P, et al. A taxonomic note on the genus ‎Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus ‎beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. ‎‎2020;70(4):2782–858. ‎ https://doi.org/10.1099/ijsem.0.004107

‎Behera S, Ray R, Zdolec N. Lactobacillus plantarum‎ with functional properties: An approach to ‎increase safety and shelf-life of fermented foods. BioMed. Res. Int. 2018; Article ID 9361614. https://doi.org/10.1155/2018/9361614

‎Saito R, Sato N. Characterization of Lactiplantibacillus plantarum TO-A growth inhibition activity ‎against pathogenic bacteria. J. Prob. Health. 2021;9(9): 253. Available at: ‎https://www.longdom.org/open-access/characterization-of-lactiplantibacillus-plantarum-toa-growth-‎inhibition-activity-against-pathogenic-bacteria.pdf.‎

‎Rocchetti M, Russo P, Capozzi V, Drider D, Spano G, Fiocco D. Bioprospecting antimicrobials from ‎Lactiplantibacillus plantarum: Key factors underlying its probiotic action. Int. J. Mol. Sci. 2021; ‎‎22(21):12076. https://doi.org/10.3390/ijms222112076

‎WHO. Oral health information systems. 2014. Available at: ‎http://www.who.int/oral_health/action/information/surveillance/en/.‎

‎Zhang F, Li Y, Wang X, Wang S, and Bi D. The impact of Lactobacillus plantarum‎ on the gut ‎microbiota of mice with DSS-induced colitis. BioMed. Res. Int. 2019;3921315. https://doi.org/10.1155/2019/3921315

‎Panda S, Kar N, Ray R, Montet D. Probiotic lactic acid bacteria: applications in food, feed and ‎pharmaceutical industries. Biotechnol. Emerg. Trends. 2008;177–196. Available at: ‎https://agritrop.cirad.fr/549776/.‎

‎Aritonang S, Roza E, Sandra A. Short Communication: Application of bacteriocin from Lactobacillus ‎plantarum SRCM 1 004 34 strain isolated from okara as a natural preservative in beef sausage. ‎Biodiversitas. 2020; 21(5): 2240-2245.

https://doi.org/10.13057/biodiv/d210553

‎Timothy B, Iliyasu AH, Anvikar AR. Bacteriocins of lactic acid bacteria and their industrial ‎application. Curr. Top. Lact. Acid Bact. Probiotics. 2021; 7(1):1-13. ‎ https://doi.org/10.35732/ctlabp.2021.7.1.1

‎De Giani A, Bovio F, Forcella M, Fusi P, Sello G, Di Gennaro P. Identification of a bacteriocin-like ‎compound from Lactobacillus plantarum‎ with antimicrobial activity and effects on normal and ‎cancerogenic human intestinal cells. AMB Expr. 2019;9:88 . https://doi.org/10.1186/s13568-019-0813-6

‎Dong Q, Lu X, Gao B, Liu Y, Aslam MZ, Wang X, Li Z. Lactiplantibacillus plantarum subsp. ‎plantarum and Fructooligosaccharides combination inhibits the growth, adhesion, invasion, and ‎virulence of Listeria monocytogenes. Foods. 2022;11:170. https://doi.org/10.3390/foods11020170

‎Soltan Dallal M, Davoodabadi A, Abdi M, Hajiabdolbaghi M, Sharifi Yazdi M, Douraghi M, ‎Tabatabaei Bafghi S. Inhibitory effect of Lactobacillus plantarum‎ and Lb. fermentum isolated from the ‎faeces of healthy infants against nonfermentative bacteria causing nosocomial infections. New ‎Microbe New Infect. 2017; 15: 9–13. ‎ https://doi.org/10.1016/j.nmni.2016.09.003

‎Harrigan W, McCance M. Laboratory Methods in Food and Dairy Microbiology. Academic Press ‎Inc. Limited, London. 1976. Available at: https://agris.fao.org/agris-‎search/search.do?recordID=US201300540912.‎

‎Fritsche T, Swoboda S, Olson J, Moore F, Meece J, Novicki T. Evaluation of the sensititre aris2x ‎and vitek 2 automated systems for identification of bacterial pathogens recovered from veterinary ‎specimens. Marshfield labs. 2011; University of Wisconsin, LA CROSSE. Available at: ‎http://www.trekds.com/techinfo/posters_abstracts/files/3229posterF8.pdf.‎

‎Sneath P, Mair S, Sharpe E, Holt G. Bergey’s Manual of Systematic Bacteriology. Baltimore: in ‎Kleins and Wilkins. 2009.‎

‎Benavides A, Ulcuango M, Yépez L, Tenea G. Assessment of the in vitro bioactive properties of ‎lactic acid bacteria isolated from native ecological niches of Ecuador. Rev. Argent. Microbiol. 2016; ‎‎48(3): 236–244. https://doi.org/10.1016/j.ram.2016.05.003

‎Hassan AF, Muhsin SN. The protective effect of Lactobacillus against Ciprofloxacin and ‎Levofloxacin associated diarrhea in sample of Iraqi patients. Iraqi J. Pharm. Sci. 2019; 28 (2):174-‎‎179. https://doi.org/10.31351/vol28iss2pp174-179

‎Al-Qayim A, Abass D. Effects of probiotics (Lactobacillus acidophilus) on liver functions in ‎experimental colitis in rats. Iraqi J. Vet. Med. 2014; 38(2):48-54. Available at: ‎https://www.iasj.net/iasj/download/4f9cc22edf4d8345.‎ https://doi.org/10.30539/iraqijvm.v38i2.223

‎20. Abd A, Ali T. Efficacy of bacteriocin extracted from Lactobacillus acidophilus (LAK) against ‎Bacillus cereus in cow raw milk. Iraqi J. Vet. Med. 2015; 39(2):91-97. ‎ https://doi.org/10.30539/iraqijvm.v39i2.184

‎Najim N, Daher A. The synergistic bactericidal effects of bacteriocin and pressurization against E. ‎coli O157:H7 in raw milk. Iraqi J. Vet. Med. 2013; 38(1): 15 -23. https://doi.org/10.30539/iraqijvm.v38i1.249

Khudhir Z. The synergistic effects of Lactobacillus acidophillus ROO52 and Lactobacillus bulgaricus ‎LB-12 bacteriocins against E.coli O157:H7 in milk. Iraqi J. Vet. Med. 2014; 38(2):35-40. https://doi.org/10.30539/iraqijvm.v38i2.220

‎Mannan J, Rezwan R, Rahman S, Begum K. Isolation and biochemical characterization of ‎Lactobacillus species from Yogurt and Cheese samples in Dhaka Metropolitan Area. Bangladesh ‎Pharm. J. 2017; 20(1): 27-33. https://doi.org/10.3329/bpj.v20i1.32090

‎Ołdak A, Zielin ́ska D, Rzepkowska A, Kołozyn- Krajewska D. Comparison of antibacterial activity ‎of Lactobacillus plantarum‎‎ strains isolated from two different kinds of regional cheeses from Poland: ‎oscypek and korycinski cheese. BioMed. Res. Int. 2017; Article ID 6820369, 10. ‎ https://doi.org/10.1155/2017/6820369

‎Jia F, Zhang L, Pang X. Complete genome sequence of bacteriocin-producing Lactobacillus ‎plantarum KLDS1. 0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the ‎intestinal epithelial cells. Genomics. 2017;109(5-6):432–437. .‎ https://doi.org/10.1016/j.ygeno.2017.06.008

‎Abushelaibi A, Al-Mahadin S, El-Tarabily K, Shah N, Ayyash M. Characterization of potential ‎probiotic lactic acid bacteria isolated from camel milk. J. Food Sci. Technol. 2017; 79: 316–325. ‎https://doi.org/10.1016/j.lwt.2017.01.041

‎Pisano M, Viale S, Conti S. Preliminary evaluation of probiotic properties of Lactobacillus strains ‎isolated from Sardinian dairy products. BioMed. Res. Int. 2014; Article ID 286390, 9. ‎ https://doi.org/10.1155/2014/286390

‎Hulak N, Maksimovic Z, Kaic A, Skelin A, Fuka M. Indigenous strains of Lactobacillus isolated ‎from the Istrian cheese as potential starter cultures. Mljekarstvo. 2016;66(4):282–292. DOI: ‎‎10.15567/mljekarstvo.2016.0404.‎ https://doi.org/10.15567/mljekarstvo.2016.0404

‎Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W. ‎Bacteriocin from lactic acid bacteria and their applications in meat and meat products. Meat Sci. ‎‎2016. ‎ https://doi.org/10.1016/j.meatsci.2016.04.004

‎Jandaik S, Sharma M, Kumar Singh R. Antimicrobial activity of bacteriocin produced by lactic acid ‎bacteria isolated from milk products. J. Pure Appl. Microbiol. 2013;7(1): 603-608. Available at: ‎http://www.amb-express.com/content/2/1/48.‎ https://doi.org/10.1186/2191-0855-2-48

‎Chaalel A, Riazi A, Dubois-Dauphin R, Thonart P. Screening of plantaricin EF and JK in an ‎Algerian Lactobacillus plantarum‎‎ isolate. Asian Pac. J. Trop. Dis. 2015; 5:474–482. DOI: ‎‎10.1016/S2222-1808(15)60819-2.‎ https://doi.org/10.1016/S2222-1808(15)60819-2

‎Jameel AA, Haider NH. Study the antimicrobial and antiadhesive activity of purified biosurfactant ‎produced from Lactobacillus plantarum‎‎ against pathogenic bacteria. Iraqi J. Agric. Sci. 2021; ‎‎52(5):1194-1206. https://doi.org/10.36103/ijas.v52i5.1457

‎Diop M, Dubois-Dauphin BR, Tine E. Bacteriocin producers from traditional food products. ‎Biotechnol. Agron. Soc. Environ. 2007; 11(4): 275-281. Available at: https://popups.uliege.be/1780-‎‎4507/index.php?id=17301&file=1&pid=1636.‎

‎Tsai C, Lin P, Hsieh M. Three Lactobacillus strains from healthy infant stool inhibit enterotoxigenic ‎Escherichia coli grown in vitro. Anaerobe. 2008; 14:61-7.‎ https://doi.org/10.1016/j.anaerobe.2007.11.003

‎Jara S, Sanchez M, Vera R, Cofre J, Castro E. The inhibitory activity of Lactobacillus spp. isolated ‎from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe. 2011; ‎‎17:474-7. https://doi.org/10.1016/j.anaerobe.2011.07.008

‎Azizi F, Habibi M, Edalatian R. The biodiversity of Lactobacillus spp. from Iranian raw milk Motal ‎cheese and antibacterial evaluation based on bacteriocin-encoding genes. AMB Expr. 2017; 7:176. ‎https://doi.org/10.1186/s13568-017-0474-2

‎Ouwehand A, Vesterlund S. Antimicrobial components from lactic acid bacteria. Lactic Acid ‎Bacteria Microbiological and Functional Aspects. New York: Marcel Dekker Inc. 2004. Available at: ‎https://www.routledge.com/Lactic-Acid-Bacteria-Microbiological-and-Functional-Aspects/Vinderola-‎Ouwehand-Salminen-Wright/p/book/9780815366485.‎ https://doi.org/10.1201/9780824752033.ch11

‎Mohsin ZA, Ali WS. Antagonistic activity of bacteriocin-producing Lactobacillus against Candida ‎spp. Iraqi J. Sci. 2021; 62 (7): 2‎ https://doi.org/10.24996/ijs.2021.62.7.4

‎Sankar R, Priyanka D, Reddy S, Rajanikanth P, Kumar K, Indira M. Purification and ‎characterization of bacteriocin produced by Lactobacillus plantarum‎‎ isolated from cow milk. Int. J. ‎Microbiol. Res. 2012; 3:133–137.10.5829/idosi.ijmr.2012.3.2.62182.‎

‎Hernández D, Cardell E, Zarate V. Antimicrobial activity of lactic acid bacteria isolated from ‎Tenerife cheese: Initial characterization of plantaricin TF711, a bacteriocin-like substance produced ‎by Lactobacillus plantarum‎‎ TF711. J. Appl. Microbiol. 2005; 99: 77–84. https://doi.org/10.1111/j.1365-2672.2005.02576.x

Milioni C, Martínez B, Degl’Innocenti S, Turchi B, Fratini F, Cerri D, Fischetti R. A novel ‎bacteriocin produced by Lactobacillus plantarum‎‎ LpU4 as a valuable candidate for biopreservation in ‎artisanal raw milk cheese. Dairy Sci. Technol. 2015; 95: 479–494.

https://doi.org/10.1007/s13594-015-0230-9

‎Barbosa M, Todorov S, Ivanova, Belguesmia Y, Choiset Y, Rabesona H, Chobert J, Haertlé T, ‎Franco B. Characterization of a two-peptide plantaricin produced by Lactobacillus plantarum‎‎ MBSa4 ‎isolated from Brazilian salami. Food Control. 2016; 60: 103–112. https://doi.org/10.1016/j.foodcont.2015.07.029

‎Arsi K, Donoghue M, Woo-Ming A, Blore P, Donoghue D. The efficacy of selected probiotic and ‎prebiotic combinations in reducing Campylobacter colonization in broiler chickens. J. Appl. Poult. ‎Res. 2015; 24(3): 327–334. https://doi.org/10.3382/japr/pfv032

Similar Articles

You may also start an advanced similarity search for this article.