Effect of Vitamin E as α-Tocopherol Acetate on Mercuric Chloride-Induced Chronic Oxidoreductive Stress and Nephrotoxicity in Rats تاثير استخدام فيتامين هاء كألفا- توكوفيرول اسيتيت على حالة الجهد التاكسدي الاختزالي الناشيء عن المحدث كلوريد الزئبقيك والمتسبب في حالة التسمم الكلوي في الجرذان

Main Article Content

Ajwad Awad Muhammad Assumaidaee
Nathera M. Ali
Ammar A. Fadhil

Abstract

Impact of vitamin E against mercuric chloride (HgCL2) induced renal toxicity in Wister albino rats was studied. Feeding of the rats with diet and water contaminated with a non lethal dose of the mercuric chloride (20 parts per million) every other day for 42 days resulted in significant increase of serum malondialdehyde (MDA), which is an important biomarker of the oxidoreductive stress, and significant decline in each of the reduced glutathione (r-GSH) concentration, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) enzymes activities, which constitute a vital part of the endogenous protective antioxidant system, as compared to the control group. The study found that the simultaneous oral co administration of vitamin E (as α-tocopherol acetate) 100 mg/kg B.W. every other day for 42 days along with mercuric chloride produced a cardinal protective effects against the development of the mercuric chloride induced nephrotoxicity. This can be through reversing the elevated oxidative stress; induced by the administration of the HgCL2. In conclusion serum biochemical and kidney histopathological findings of the current study highlight the beneficial effects of vitamin E in rats with HgCl2-mediated renal toxicity.

Downloads

Download data is not yet available.

Article Details

How to Cite
Effect of Vitamin E as α-Tocopherol Acetate on Mercuric Chloride-Induced Chronic Oxidoreductive Stress and Nephrotoxicity in Rats: تاثير استخدام فيتامين هاء كألفا- توكوفيرول اسيتيت على حالة الجهد التاكسدي الاختزالي الناشيء عن المحدث كلوريد الزئبقيك والمتسبب في حالة التسمم الكلوي في الجرذان. (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 98-108. https://doi.org/10.30539/iraqijvm.v43i2.538
Section
Articles

How to Cite

Effect of Vitamin E as α-Tocopherol Acetate on Mercuric Chloride-Induced Chronic Oxidoreductive Stress and Nephrotoxicity in Rats: تاثير استخدام فيتامين هاء كألفا- توكوفيرول اسيتيت على حالة الجهد التاكسدي الاختزالي الناشيء عن المحدث كلوريد الزئبقيك والمتسبب في حالة التسمم الكلوي في الجرذان. (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 98-108. https://doi.org/10.30539/iraqijvm.v43i2.538

References

Diez, S. (2009). Human Health Effects of Methylmercury Exposure. Rev. Environ. Contam. Toxicol., 198: 111-132.

Aleo, M.; Morandini, F.; Bettoni, F.; Tanganelli, S.; Vezzola, A. and Giuliani, R. (2002). Anti-Oxidant Potential and Gap Junctionmediated Intercellular Communic-ation as Early Biological Markers of Mercuric Chloride Toxicity in the MDCK cell line. Toxicol., 16: 457-465.

De Freitas, M. L.; da Silva, A. R.; Roman, S. S. and Brandão, R. (2012). Effects of 4,4′-Dichloro-Diphenyl Diselenide (ClPhSe)2 on Toxicity Induced by Mercuric Chloride in Mice: a Comparative Study With Diphenyl Diselenide (PhSe)2. Environ. Toxicol. Pharmacol., 34: 985-994. 4. Gado, A. M. and Aldahmash, B. A. (2013). Antioxidant Effect of Arabic Gum Against Mercuric Chloride-Induced Nephrotoxicity. Drug Des. Devel. Ther., 7: 1245-1252.

Joshi, D.; Mittal, D.K.; Shukla, S. A.; Srivastav, K. and Srivastav, S. K. (2014). N-Acetyl cysteine and Selenium Protects Mercuric Chloride-Induced Oxidative Stress and Antioxidant Defense System in Liver and kidney of Rats: a Histopathological Approach. J. Trace. Elem. Med. Biol., 28 (2): 218-226.

Tolba, M. K. and Salama, A. M. (1962). Studies on the Mechanisms of Fungicidal Action of Mercuric Chloride on Mycelial Felts of Rhizoctonia solani. Arch. Mikrobiol., 43: 349-64.

Crinnion, W. (2000). Environmental Medicine, Part Three: Long-Term Effects of Chronic Low-Dose Mercury. Altern. Med. Rev., 5: 209-223.

Jaishankar, M. (2014). Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdisciplin. Toxicol., 7 (2): 60-72.

Zalups, R. K. (2000). Molecular Interactions with Mercury in The Kidney. Pharmacol. Rev., 52 (1): 113-43.

Lee, E. K.; Shin, Y. J. and Park, E.Y. (2017). Selenium-Binding Protein 1: a Sensitive Urinary Biomarker to Detect Heavy Metal-Induced Nephrotoxicity. Archives of Toxicology, 91: 1635-1648.

Chen, Y. W.; Huang, C. F.; Yang, C. Y.; Yen, C. C.; Tsai, K. S. and Liu, S. H. (2010). Inorganic Mercury Causes Pancreatic Beta-Cell Death via the Oxidative Stress-Induced Apoptotic and Necrotic Pathways. Toxicol., Appl. Pharmacol., 243: 323-331.

Assumaidaee, A. A. M.; Nathera, M. A.; Suhair, H. A. and Ammar, A.F. (2018). Efficacy of Probiotic (Protoxin) on Mercury-Induced Nephrotoxicity and Lipid Peroxidation in Rats. Diyala Joural of Agricultural Sciences, 10: 114-126.

Oguzturk, H.; Ciftci, O.; Aydin, M.; Timurkaan, N.; Beytur, A. and Yilmaz, F. (2012). Ameliorative Effects of Curcumin Against Acute Cadmium Toxicity on Male Reproductive System in Rats. Andrologia., 44: 243-249.

Othman, M. S.; Safwat, G.; Aboulkhair, M. and Abdelmoneim, A. E. (2014). The Potential Effect of Berberine in Mercury-Induced Hepatorenal Toxicity in Albino Rats Oxygen Species and Its Effect on Antioxidant Enzymes in Different Regions of Rat Brain. J. Environ. Sci. Health., 32: 395-409.

Al-Attar, A. M. (2011). Antioxidant Effect of Vitamin E Treatment on Some Heavy Metals-Induced Renal and Testicular Injuries in Male Mice. Saudi. J. Biol. Sci., 18: 63-72.

NRC, National Research. Council. (2011). Nutrient Requirement of Fish and Shrimp. National Academy Press; Washington, DC. 198-200.

Pillai, A. and Gupta, S. (2005). Antioxidant Enzyme Activity and Lipid Peroxidation in Liver of Female Rats Co-exposed to Lead and Cadmium: Effects of Vitamin E and Mn2+. Free Radic. Res., 39: 707-712.

Kulanthaivel, L.; Jayaraman, S.; Rajagopal, P.; Manikannan, M. and Vijayaprakash, S. (2018). Protective Effect of Kaempferol on Biochemical and Histopathological Changes in Mercuric Chloride Induced Nephrotoxicity in Experimental Rats. Journal of Biologically Active Products from Nature, 8:125-136.

Luna, L. G. (1968). Manual of Histologic Staining Methods of The Armed Forces Institute of Pathology. New York, Blakiston Division, McGraw-Hill.

Van, V.T. and Schnellmann, R. (2003). Toxic Nephropathy Environmental Chemicals. Semin. Nephrol., 23: 500-508.

Teixeira, F.B.; de Oliveira, A.; Leão, L.; Fagundes, N. and Fernandes, R. M. (2018). Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in The Motor Cortex. Frontiers in Molecular Neuroscience, 11: 125-131.

Yang, H.; Zhaofa, X.; Wei L.; Yu, D. and Bin, X. (2011). The Protective Role of Procyanidins and Lycopene Against Mercuric Chloride Renal Damage in Rats. Biomed. Environ. Sci., 24: 550-559.

Duracková, Z. (2010). Some Current Insights Into Oxidative Stress. Physiol Res., 59: 459-469.

Al-Madani, W. E.; Siddiqi, N. J. and Alhomida, A.S. (2009). Renal Toxicity of Mercuric Chloride at Different Time Intervals in Rats. Biochemistry Insights, 2: 37-45.

Dierickx, P. J. (1981). Urinary Gamma-Glutamyl Transferase as an Indicator of Acute Nephrotoxicity in Rats. Arch. Toxicol., 47: 209-215.

Stajn, A.; Ziki, R.V.; Ognjanovic, B.; Pavlovic, S. Z.; Kostic, M. M. and Petrovic V. M. (1997). Effect of Cadmium and Selenium on The Antioxidant Defense System in Rat Kidneys. Comp. Biochem. Physiol., 2: 167-172.

Devarajan, P. (2006). Update on Mechanisms of Ischemic Acute Kidney Injury. J. Am. Soc. Nephrol., 17: 1503-1520.

Agarwal, R.; Goel, S.K.; Chandra, R. and Behari, J. R. (2010). Role of Vitamin E in

Preventing Acute Mercury Toxicity in Rat. Environ. Toxicol. Pharmacol., 1: 70-78.

Shimojo, N.; Kumagai Y. and Nagafune, J. (2002). Differences Kidney and Liver in Decreased Manganese Superoxide Activity Caused by Exposure of Mice to Mercury. Toxicology, 76: 383-387.

Hazelhoff, M. H. (2018). Renal Expression of Organic Anion Transporters is Modified After Mercuric Chloride Exposure: Gender-Related Differences. Toxicol. Lett., 295: 390-396.

Higashi, Y. (2010). IGF-1, Oxidative Stress and Atheroprotection. Trends in Endocrino-logy and Metabolism: TEM., 21 (4): 245-254.

Fridovich, I. (1995). Superoxide Radical and Superoxide Dismutases. Annu. Rev. Biochem., 64: 97-112.

Dean, R.T.; Fu S.; Stocker, R. and Davies, M.J. (1997). Biochemistry and Pathology of Radical-Mediated Protein Oxidation. Bio-chem. J., 324: 1-18.

Falah, M. K. A. (2012). Evaluation of Selected Parameters of Rat Liver Injury Following Repeated Administration of Oseltamivir for Different Periods. Iraqi J. Vet. Med., 36 (1): 137-144.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)