Synthesis, Characterization of Silver Nanoparticles Using Nigella sativa Seeds and Study Their Effects on the Serum Lipid Profile and DNA Damage on the Rats’ Blood Treated with Hydrogen Peroxide

Main Article Content

Zainab Sattar Ali
Khalisa Khadim Khudair

Abstract

This study was aimed to produce silver nanoparticles using aqueous extract of Nigella sativa, also to investigate the effects of green synthesized Nigella sativa seeds silver nanoparticles on dyslipidemia and DNA fragmentation in hydrogen peroxide-exposed rats. The produced Nigella sativa seeds silver nanoparticles were characterized through Ultraviolet-Visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction (XRD) style, and Scanning Electron Microscope was used to investigate the morphology and size of synthesized Nigella sativa seeds silver nanoparticles. Forty adults male rats were randomly and equally divided into five groups and daily  had been remedying for two months as followings:  G1 group (Control), G2 group, rats in this group were received tap water containing 1%  H2O2, animals in G3 and G4 groups were injected IP  Nigella sativa seeds silver nanoparticles 25 and 50 mg/kg B.W., respectively, and received ordinary tap water containing 1% H2O2 , and G5 group, animals in this group were injected IP  Nigella sativa seeds extract  50 mg/kg B.W. and received ordinary tap water containing 1% H2O2. Blood samples collected after one and two months of the experiment from each animal for DNA fragmentation measurements and serum estimated lipid profile.The results receded a case of dyslipidemia,  as well  significant elevation in DNA damage in G4 and G2 groups The results also confirmed the hypolipidemic and cytoprotective effect of Nigella sativa seeds extract (G5 group) and silver nanoparticles as25mg/kg B.W (group G3) clarified by correction of dyslipidemia, alongside significant alleviation in DNA damage. In conclusion, the results in the current study effectsof Nigella sativa seeds silver nanoparticles at high dose and documents the ameliorative effect of Nigella sativaseeds extract and Nigella sativa seeds silver nanoparticles on lipid profile and DNA damage.

Downloads

Download data is not yet available.

Article Details

How to Cite
Synthesis, Characterization of Silver Nanoparticles Using Nigella sativa Seeds and Study Their Effects on the Serum Lipid Profile and DNA Damage on the Rats’ Blood Treated with Hydrogen Peroxide. (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 23-37. https://doi.org/10.30539/iraqijvm.v43i2.526
Section
Articles

How to Cite

Synthesis, Characterization of Silver Nanoparticles Using Nigella sativa Seeds and Study Their Effects on the Serum Lipid Profile and DNA Damage on the Rats’ Blood Treated with Hydrogen Peroxide. (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 23-37. https://doi.org/10.30539/iraqijvm.v43i2.526

References

Nel, A.; Xia, T.; Madler, L. and Li, N. (2006). Toxic Potential of Materials at the Nano level. Sci., 311 (5761): 622 - 627.

Nikalje, A. P. (2015). Medicinal Chemistry Nano-technology and its Applications in Medicine. Med Chem Nikalje, 5: 81 - 9..

Sun, Q.; Cai, X.; Li, J.; Zheng M, Chen Z and Yu C-P. (2014). Green Synthesis Of Silver Nanoparticles Using Tea Leaf Extract and Evaluation of Their Stability and Antibacterial Activity. Colloids surfaces A Physicochem Eng Asp., 444: 226 - 231.

Al-Obaidi, H.; Kalgudi, R. and Zariwala, M. G. (2018). Fabrication of Inhaled Hybrid Silver/ Ciprofloxacin Nanoparticles with Synergetic Effect Against Pseudomonas aeruginosa. Eur J Pharm Biopharm., 128: 27 -35.

Kaur, A.; Goyal, D.; and Kumar, R. (2018). Surfactant Mediated Interaction ofVancomycin with Silver Nanoparticles. Appl Surf Sci., 449: 23 - 30.

Jiang, Q.; Yu, S.; Li, X.; Ma, C. and Li, A. (2018). Evaluation of Local Anesthetic Effects of Lidocaine-ibuprofen Ionic Liquid Stabilized Silver Nanoparticles in Male Swiss Mice. J Photochem Photobiol B Biol., 178: 367 - 370 .

Karthik, C. S.; Manukumar, H. M.; Ananda, A. P.; Nagashree, S.; Rakesh, K. P. and Mallesha, L. (2018). Synthesis of Novel Benzodioxane Midst Piperazine Moiety Decorated Chitosan Silver Nanoparticle Against Biohazard Pathogens and as Potential Anti-inflammatory Candidate: A molecular docking studies. Int J Biol Macromol., 108: 489 - 502.

Soni, N. and Dhiman, R. C. (2017). Phyto-chemical, Antioxidant, Larvicidal, and Anti-microbial Activities of Castor (Ricinus communis) Synthesized Silver Nano-particles. Chinese, 9 (3): 289 - 294.

lakshmi, A. R.; latha, S. S. and chitra, A. J. (2019). Synthesis and Characterization of Solanum Nigrum Derived Nanoparticles and Exploration if Its Antioxidant, Antibacterial and Anticancer Potentials in in Vitro. Int J Agric Environ Sci., 6 (1): 29 - 36.

Petrov, P.D.; Yoncheva, K.; Gancheva, V.; Konstantinov, S. and Trzebicka, B. (2016). Multifunctional Block Copolymer Nanocarriers for Co-delivery of Silver Nanoparticles and Curcumin: Synthesis and Enhanced Efficacy Against Tumor Cells. Eur Polym J., 81: 24 - 33.

Ramachandran, R.; Krishnaraj, C. and Subramaniyan, A. (2017). Mater Sci Eng C., 73: 674 - 683.

Totaro, P. and Rambaldini, M. (2009). Efficacy of Antimicrobial Activity of Slow Release Silver Nanoparticles Dressing in Post-cardiac Surgery Mediastinitis. Interact Cardiovasc Thorac Surg., 8 (1): 153 - 164.

Beattie, M. and Taylor, J. (2011). Silver Alloy vs. Uncoated Urinary Catheters: Asystematic Review of The literature. J Clin Nurs., 20 (15]16): 2098 - 2108.

Ge,L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X. and Xing, M.M.Q. (2014). Nanosilver Particles in Medical Applications: Synthesis, Performance, and Toxicity. Int J Nanomedicine, 9 (1): 2399 -2407.

Domeradzka-Gajda, K.; Nocu., M.; Roszak, J.; Janasik, B.; Quarles, Jr. C. D. and W.sowicz, W. (2017). A study on The in vitroPercutaneous Absorption of Silver Nanoparticles in Combination with Aluminum Chloride, Methyl Paraben or Di-n-butyl Pthalate. Toxicol Lett., 272: 38 - 48.

Kraeling, M. E. K.; Topping, V. D.; Keltner, Z. M.; Belgrave, K. R.; Bailey, K. D. and Gao, X. (2018). In-Vitro Percutaneous Pentration of Silver Nanoparticles in Pig and Human Skin. Regul Toxicol Pharmacol., 95: 314 - 322.

Fortunati, E.; Peltzer, M.; Armentano, I.; Jimenez, A. and Kenny, J. M. (2013). Combined Effects of Cellulose Nanocrystals and Silver Nanoparticles on The barrier and Migration Properties of PLA Nano-Biocomposites. J Food Eng., 118 (1): 117 - 124.

Kumar, S.; Shukla, A.; Baul, P. P.; Mitra, A. and Halder, D. (2018). Biodegradable Hybrid Nanocomposites of Chitosan/gelatin and Silver Nanoparticles for Active Food Packaging Applications. Food Packag shelf life, 16:178 -184.

Pannerselvam, B.; Jothinathan, M. K. D.; Rajen-deran, M.; Perumal, P.; Thangavelu, K. P. and Kim, H. J. (2017). An in vitroStudy on The burn Wound Healing Activity of Cotton Fabrics Incorporated with Phytosynthesized Silver Nanoparticles in Male Wistar albino Rats. Eur J Pharm Sci., 100: 187 - 196.

Zhou, Y. and Tang, R-C. (2018). Facile and Eco-friendly Fabrication of AgNPs Coated Silk for Antibacterial and Antioxidant Textiles Using Honeysuckle Extract. J Photochem Photobiol B Biol., 178: 463 - 471.

Zhang, L.; Zeng, G.; Dong, H.; Chen, Y.; Zhang, J. and Yan, M.(2017). The impact of Silver Nanoparticles on The Co-composting of Sewage Sludge and Agricultural Waste: Evolutions of Organic Matter and Nitrogen. Bioresour Technol., 230: 132 - 139.

Gupta, S. D.; Agarwal, A. and Pradhan, S. (2018). Phytostimulatory Effect of Silver Nanoparticles (AgNPs) on Rice Seedling Growth: An insight from Antioxidative Enzyme Activities and Gene Expression Patterns. Ecotoxicol Environ Saf., 161: 624 - 633.

Barapatre, A.; Aadil, K. R. and Jha, H. (2016). Synergistic Antibacterial and Antibiofilm Activity of Silver Nanoparticles Biosynthesized by Lignin-degrading Ffungus. Bioresour Bioprocess., 3 (1): 1 - 8.

Pana.ek, A.; Smekalova, M.; Kilianova, M.; Prucek, R.; Bogdanova, K. and Ve.e.ova, R. (2016). Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing no Cytotoxic Effect. Molecules, 21 (1): 1 - 26.

Nallanthighal, S.; Chan, C.; Murray, T.M.; Mosier, A.P.; Cady, N.C. and Reliene, R.(2017). Differential Effects of Silver Nanoparticles on DNA Damage and DNA Repair Gene Expression in Ogg1- deficient and Wild TypeMice. Nanotoxicology, 11 (8): 1 - 16.

Asare, N.; Duale, N.; Slagsvold, H. H.; Lindeman, B.; Olsen, A. K. and Gromadzka-Ostrowska, J. (2016). Genotoxicity and Gene Expression Modulation of Silver and Titanium Dioxide Nanoparticles in Mice. Nanoto-xicology, 10 (3): 312 - 321.

Guo, X.; Li, Y.; Yan, J.; Ingle, T.; Jones, M. Y. and Mei, N. (2016).Size and Coating Dependent Cytotoxicity and Genotoxicity of Silver Nanoparticles Evaluated Using In Vitro Standard Assays. Nanotoxicology, 10 (9): 1373 - 1384.

Gliga, A.R.; Skoglund, S.; Odnevall Wallinder, I.; Fadeel, B. and Karlsson, H.L. (2014). Size-Dependent Cytotoxicity of Silver Nanoparticles In Human Lung Cells: The role of Cellular Uptake, Agglomeration and Ag Release. Part Fibre Toxicol., 11 (1):1 - 17 .

Jiang, X.; Micl.u., T.; Wang, L.; Foldbjerg, R.; Sutherland, D. S. and Autrup, H. (2015). Fast Intracellular Dissolution and Persistent Cellular Uptake of Silver Nanoparticles In CHO-K1 Cells: Implication for Cytotoxicity. Nanoto-xicology, 9 (2): 181 - 189 .

Mili., M.; Leitinger, G.; Pavi.i., I.; Zebi. Avdi.evi., M.; Dobrovi., S. and Goessler, W. (2015). Cellular Uptake and Toxicity Effects of Silver Nanoparticles In Mammalian Kidney Cells. J Appl Toxicol., 35 (6): 581 - 592.

Bergin, I. L.; Wilding, L. A.; Morishita, M.; Walacavage, K.; Ault, A. P. and Axson, J. L. (2016). Effects of Particle Size and Coating on Toxicologic Parameters, Fecal Elimination Kinetics and Tissue Distribution of Acutely Ingested Silver Nanoparticles In A Mouse Model. Nanotoxicology, 10 (3): 352 - 360.

Boudreau, M. D.; Imam, M. S.; Paredes, A. M.; Bryant, M. S.; Cunningham, C.K. and Felton, R. P. (2016). Differential Effects of Silver Nanoparticles and Silver Ions on Tissue Accumulation, Distribution, and Toxicity In The Sprague Dawley Rat Following Daily Oral Gavage Administration for 13 Weeks. Toxicol Sci., 150 (1): 131 - 160 .

Winterbourn,C. (2017).Biological Production, Detection and Fate of Hydrogen Peroxide. Antioxidants Redox Signal., 29 (6): 1 - 32.

Tudek, B.; Zd.alik-Bielecka, D.; Tudek, A.; Kosicki, K.; Fabisiewicz, A. and Speina, E. (2017). Lipid Peroxidation In Face of DNA Damage, DNA Repair and Other Cellular Processes. Free Radic Biol Med., 107: 77 - 89 .

Sies, H.; Berndt, C. and Jones, D. P. (2017). Oxidative Stress. Annu. Rev. Biochem., 86: 715-748 .

Hatanaka, H.; Hanyu, H.; Fukasawa, R.; Hirao, K.; Shimizu, S. and Kanetaka, H. (2015). Differences in Peripheral Oxidative Stress Markers In A Lzheimerfs Disease, Vascular Dementia and Mixed Dementia Patients. Geriatr Gerontol Int., 15: 53 - 58 .

Bhattacharya, S. (2015). Reactive Oxygen Species and Cellular Defense System. In: Free Radicals In Human Health and Disease. Springer, Pp; 17 - 29.

Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D. and Liu, Y. (2016). ROS and ROS-mediated Cellular Signaling. Oxid Med Cell Longev., 4350965: 1 - 19.

Mahmood, M.S.; Gilani, A.H.; Khwaja, A.; Rashid, A. and Ashfaq, M.K.( 2003). The in vitro effect Of Aqueous Extract of Nigella Sativa Seeds on Nitric Oxide Production. Phyther Res An Int J Devoted to Pharmacol Toxicol Eval Nat Prod Deriv., 17 (8): 921 - 924 .

Awan, M. A.; Akhter, S.; Husna, A. U.; Ansari, M.S.; Rakha, B. A. and Azam, A.(2018). Antioxidant Activity of Nigella Sativa Seeds

Aqueous Extract and Its Use for Cryopreservation of Buffalo Spermatozoa. Andrologia, 50 (6): e13020-e13026

Ranjan, P.; Das, M. P.; Kumar, M. S.; Anbarasi, P.; Sindhu, S. and Sagadevan, E. (2013). Green Synthesis and Characterization of Silver Nanoparticles fom Nigella Sativa and Its Application Against UTI Causing Bacteria. J. Acad. Ind. Res., 2 (1): 45 - 49.

Sangeetha, J. S. and Jayakumar, J. P. (2014). Biosynthesis and Functionalization of Silver Nanoparticles Using Nigella sativa, Dioscorea alata and Ferula asafoetida. Sci Adv Mater., 6 (8): 1681 - 1690 .

Amooaghaie, R.; Reza, M. and Azizi, M. (2015). Ecotoxicology and Environmental Safety Synthesis, Characterization And Bioco-mpatibility of Silver Nanoparticles Synthesized from Nigella Sativa Leaf Extract In Comparison with Che-Mical Silver Nanoparticles. Ecotoxicol Environ Saf., 120: 400 - 408.

Banerjee, P.; Satapathy, M.; Mukhopahayay, A. and Das, P. (2014). Leaf Extract Mediated Green Synthesis of Silver Nanoparticles from Widely Available Indian Plants: Synthesis, Characterization, Antimicrobial Property and Toxicity Analysis. Bioresour Bioprocess., 1 (1): 1 - 3.

Mittal, A. K.; Tripathy, D.; Choudhary, A.; Aili, P. K.; Chatterjee, A. and Singh, I. P. (2015). Bio-synthesis of Silver Nanoparticles Using Potentilla Fulgens Wall. Ex Hook. and Its Therapeutic Evaluation as Anticancer and Antimicrobial Agent. Mater Sci Eng C., 53: 120 - 127. 46. Rolim, W. R.; Pelegrino, M. T.; de Araujo Lima, B.; Ferraz, L. S.; Costa, F. N. and Bernardes, J. S. (2019). Green Tea Extract Mediated Biogenic Synthesis of Silver Nanoparticles: Characterization, Cytotoxicity Evaluation and Antibacterial Activity. Appl Surf Sci., 463: 66 -74.

Rietveld, H.M. (1967). Line Profiles of Neutron Powder]Diffraction Peaks for Structure Refinement. Acta Crystallogr., 22 (1): 151.162 .

Rietveld, H. A. (1969). Profile Refinement Method for Nuclear and Magnetic Structures. J Appl Crystallogr., 2 (2): 65 - 71.

Khoshnamvand, M.; Huo, C. and Liu, J. (2019). Silver Nanoparticles Synthesized Using Allium A mpeloprasum L. Leaf Extract: Character-ization and Performance In Catalytic Reduction Of 4-Nitrophenol and Antioxidant Activity. J Mol Struct., 1175: 90 - 96.

Meiattini, F.; Prencipe, L.; Bardelli, F.; Giannini, G. and Tarli, P. (1978). The 4-hydroxybenzoate/4-aminophenazone Chromo-genic System Used In The Enzymic Determ-ination of Serum Cholesterol. Clin Chem., 24 (12): 2161 - 2165.

Kaplan, A. and Lee, V. F. (1965). A micro-method for Determination of Serum Triglycerides. Proc Soc Exp Biol Med., 118 (1): 296-7 .

William, T. and Robert, I. (1972). Estimation of The concentration of Low-density Lipoprotein Cholesterol in Plasma, Without Use of The Preparative Ultra-centrifuge Friede wald, William T Levy, Robert I Fredrickson, Donald S. Clin Chem., 18 (6): 499 - 502 .

Grove, T. H. (1979). Effect of Reagent pH on Determination of High-density Lipoprotein Cholesterol by Precipitation with Sodium Phosphotungstate-magnesium. Clin Chem., 25 (4): 560 - 564 .

Olive, P.L. (1999). DNA Damage and Repair in Individual Cells: applications of the comet assay in radiobiology. Int J Radiat Biol., 75 (4): 395 - 405.

Snedecor, W. and Cochran, W.G. (1973). Statistical methods. Iowa State University Press .

Saratale, R. G.; Benelli, G.; Kumar, G.; Kim, D. S. and Saratale, G. D. (2017). Bio-fabrication of Silver Nanoparticles Using the Leaf Extract of An Ancient Herbal Medicine, Dandelion (Taraxacum officinale), Evaluation of their Antioxidant, Anticancer Potential and Anti-microbial Activity Against Phytopathogens. Environ Sci Pollut Res., 25 (11): 10392 - 10406 .

Salari, S.; Esmaeilzadeh, S. and Samzadeh-kermani, A. (2019). In-vitro Evaluation of Antioxidant and Antibacterial Potential of Green Synthesized Silver Nanoparticles Using Prosopis Farcta Fruit Extract. Iran. J. Pharm. Res., 18 (1): 430 - 45..

Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S. A.; Najmi, A. K. and Siddique, N. A. (2013). A Review on Therapeutic Potential of Nigella sativa: A Miracle herb. Asian Pac J Trop Biomed., 3 (5): 337 - 352.

Barbinta-Patrascu, M. E.; Bunghez, I-R.; Iordache, S. M.; Badea, N. and Fierascu, R-C. (2013). Ion RM. Antioxidant Properties of Biohybrids Based on Liposomes and Sage Silver Nanoparticles. J Nanosci Nanotechnol., 13 (3): 2051 - 2060.

Ahmed, S.; Ahmad, M.; Swami, B.L. and Ikram, S. (2016). A review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J Adv Res., 7 (1): 17 - 28.

Kasthuri, J.; Veerapandian, S. and Rajendiran, N. (2009). Biological Synthesis of Silver and Gold Nanoparticles Using Apiin as Reducing Agent. Colloids Surfaces B Biointerfaces, 68 (1): 55 - 60.

Rostami-Vartooni, A.; Nasrollahzadeh, M. and Alizadeh, M. (2016). Green Synthesis of Seashell Supported Silver Nanoparticles Using Bunium persicum Seeds Extract: Application of The particles for Catalytic Reduction of Organic Dyes. J Colloid Interface Sci., 470:

-75.

Saratale, R.G.; Shin, H-S.; Kuma,r G.; Benelli, G.; Ghodake, G.S. and Jiang,Y.Y. (2018). Exploiting Fruit Byproducts for Eco-friendly Nanosynthesis: Citrus~ clementina peel Extract Mediated Fabrication of Silver Nanoparticles with High Efficacy Against Microbial Pathogens and Rat Glial Tumor C6 Cells. Environ Sci Pollut Res., 25 (11): 10250 - 10263 .

Daryabeygi-Khotbehsara, R.; Golzarand, M.; Ghaffari, M. P. and Djafarian, K. (2017). Nigella sativa Improves Glucose Homeostasis and Serum Lipids in Type 2 Diabetes: A Systematic Review and Meta-analysis. Complement Ther Med., 35: 6 - 13.

Suleria, H.A.; Butt, M. S.; Anjum, F. M.; Ashraf, M.; Qayyum, M. M. and Khalid, N. (2013). Aqueous Garlic Extract Attenuates Hypercholesterolemic and Hyperglycemic Perspectives; Rabbit Experimental Modeling. J Med Plants Res., 7 (23): 1709 - 1717.

Asgary, S.; Sahebkar, A. and Goli-Malekabadi, N. (2015). Ameliorative Effects of Nigella Sativa. On Dyslipidemia. J Endocrinol Invest., 38 (10): 1039-1046 .

Salem, M.L. (2005). Immunomodulatory and Therapeutic Properties 0f The Nigella Sativa L. Seed. Int Immunopharmacol., 5 (13): 1749 -1770.

Iqbal, M.J.; Butt, M.S.; Muhammad, M. and Qayyum, N. (2017). Antihypercholesterolemic and Anti-Hyperglycaemic Effects of Con-ventional and Supercritical Extracts of Black Cumin (Nigella Sativa). Asian Pacific J. Trop. Biomed. J., 7 (11): 1014 - 1022.

Laskar, A.A.; Khan, M.A.; Rahmani, A.H.; Fatima, S. and Younus, H. (2016). Thymo-quinone, An Active Constituent of Nigella Sativa Seeds, Binds with Bilirubin and Protects Mice from Hyperbilirubinemia and Cyclopho-sphamide-induced Hepatotoxicity. Biochimie, 127: 205 - 213.

Meena, A. K.; Ratnam, D. V.; Chandraiah, G.; Ankola, D. D.; Rao, P. R. and Kumar, M. N. (2008). Oral Nanoparticulate Atorvastatin Calcium Is More Efficient and Safe in Comparison to LipicureR in Treating Hyperlip-idemia. Lipids. 43 (3): 231 - 241.

Gonzalez, C.; Rosas-Hernandez, H.; Ramirez-Lee, M.A.; Salazar-Garcia, S. and Ali, S.F.(2014). Role of Silver Nanoparticles (Agnps) on The Cardiovascular System. Arch. Toxicol., 90 (3): 493 - 511.

Khudiar K. (2010). Effect of 1% Hydrogen Peroxide (H2O2) in Drinking Water on Some Parameters iIn Adult Male Rabbits. Iraqi J Biotechnol., 9 (2): 202 - 210.

Al-Doseri, A.T. and Khudair K.K. (2016). Effect of L-carnitine and/or Sitagliptin on Serum Lipids Profile of H2O2Treated Rats (Part-1). Adv Anim Vet Sci., 4 (2): 71-77 .

Bhatti, G. K.; Sidhu, I. P.; Saini, N. K.; Puar, S. K.; Singh, G. and Bhatti, J. S. (2014). Ameli-orative Role Of Melatonin Against Cyperm-ethrin Induced Hepatotoxicity and Impaired Antioxidant Defense System in Wistar Rats. IOSR J Environ Sci Toxicol Food Technol., 8 (1): 39 - 48 .

Flesar, J.; Havlik, J.; Kloucek, P.; Rada, V.; Titera, D. and Bednar, M.(2010). In vitro Growth-Inhibitory Effect of Plant-Derived Extracts and Compounds Against Paenibacillus Larvae and Their Acute Oral Toxicity to Adult Honey Bees. Vet Microbiol., 145 (1.2): 129 -133.

Darakhshan, S.; Pour, A.B.; Colagar, A.H. and Sisakhtnezhad, S. (2015). Thymoquinone and Its Therapeutic Potentials. Pharmacol Res., 95: 138 - 158.

Gore, P.R.; Prajapati, C.P.; Mahajan, U.B.; Goyal, S.N.; Belemkar, S.; Ojha, S. and Patil, C.R. (2016). Protective Effect of Thymo-quinone Against Cyclophosphamide-Induced Hemorrhagic Cystitis Through Inhibiting DNA Damage and Upregulation of Nrf2 Expression. Int. J. Biol. Sci., 1 (8): 944 - 953.

Gore, P.R.; Prajapat,i C.P.; Mahajan, U.B,; Goyal, S.N.; Belemkar, S. and Ojha, S.(2016). Protective Effect of Thymoquinone Against CyclophosphamideInduced Hemorrhagic Cyst-itis Through Inhibiting DNA Damage and Up-regulation of Nrf2 Expression. Int J Biol Sci., 12 (8): 944 - 954.

Nymark, P.; Catalan, J.; Suhonen, S.; Jarventaus, H.; Birkedal, R. and Clausen, P. A. (2013). Genotoxicity of Polyvinylpyrrolidone-Coated Silver Nanoparticles in BEAS 2B Cells. Toxicology, 313 (1): 38 - 48.

Li, Y.; Qin, T.; Ingle, T.; Yan, J.; He, W. and Yin, J-J. (2016). Differential Genotoxicity Mechanisms of Silver Nanoparticles andSilver Ions. Arch Toxicol., 91 (1): 509 - 19.

Li, Y.; Bhalli, J. A.; Ding, W.; Yan, J.; Pearce, M. G. and Sadiq, R. (2014). Cytotoxicity and Genotoxicity Assessment of Silver Nano-particles in Mouse. Nanotoxicology, 8 (sup1): 36 - 45.

Li, Y.; Qin, T.; Ingle, T.; Yan, J.; He, W. and Yin,.J. J. (2017). Differential Genotoxicity Mechanisms of Silver Nanoparticles and Silver Ions. Arch Toxicol., 91 (1): 509 - 519.

Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Aman,i A.M. and SavarDashtaki, A.(2018). Green Synthesis of Silver Nanoparticles Toward Bio and Medical Applications: Review Study. Artif Cells, Nanomedicine Biotechnol., 46 (3): S855-5872 .

Ivask, A.; Kurvet, I.; Kasemets, K.; Blinova, I.; Aruoja, V. and Suppi, S. (2014). Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells In Vitro. PLoS One, 9 (7): e102108 - e102122 .

Duran, N.; Silveira, C.P.; Duran, M. and Martinez, D. S. (2015). Silver Nanoparticle Protein Corona and Toxicity: A Mini-Review. J Nanobiotechnology, 13 (1): 55 - 72.

Sudha, A.; Jeyakanthan, J. and Srinivasan, P. (2017). Green Synthesis of Silver Nanoparticles Using Lippia Nodiflora Aerial Extract and Evaluation of Their Antioxidant, Antibacterial and Cytotoxic Effects. Resour Technol., 3 (4): 506.515 .

Yang, E-J.; Kim, S.; Kim, J.S. and Choi, I-H. (2017). Inflammasome Formation and IL-1ƒÀ Release by Human Blood Monocytes in Response to Silver Nanoparticles. Biomaterials, 33 (28): 6858 - 67.

Zhang, T.; Wang, L.; Chen, Q. and Chen, C. (2014). Cytotoxic Potential of Silver Nanoparticles. Yonsei Med J., 55 (2): 283.291 .

Carlson, C.; Hussain, S.M.; Schrand, A.M.; Braydich-Stolle, L.; Hess, K.L. and Jones,R.L.(2008). Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. J Phys Chem B., 112 (43): 13608 - 13619.

Souza, T. A.; Franchi, L. P.; Rosa, L. R.; da Veiga, M. A. and Takahashi, C. S. (2016). Cytotoxicity and Genotoxicity of Silver Nanoparticles of Different Size sin CHO-K1 and CHO-XRS5 Cell Lines. Mutat Res Toxicol Environ Mutagen., 795: 70 - 83.

Burdu.el, A-C.; Gherasim, O.; Grumezescu, A.; Mogoant., L.; Ficai, A. and Andronescu, E. (2018). Biomedical Applications of Silver Nanoparticles: An Up-To-Date Overview. Nanomaterials, 8 (9): 681 - 690.

Radzig, M. A.; Nadtochenko, V. A.; Koks-harova, O. A.; Kiwi, J.; Lipasova, V.A. and Khmel, I.A. (2013). Antibacterial Effects of Silver Nanoparticles on Gram-Negative Bacteria: Influence on the Growth and Biofilms Formation, Mechanisms of Action. Colloids Surfaces B Biointerfaces, 102: 300 - 306.

Bakunina, N.; Pariante, C. M. and Zunszain, P. A. (2015). Immune Mechanisms Linked to Depression via Oxidative Stress and Neuroprogression. Immunology, 144 (3): 365 -373 .

Pickering, A. M.; Vojtovich, L.; Tower, J. and Davies, K. J. (2013). Oxidative Stress Adaptation wth Acute, Chronic, and Repeated Stress. Free Radic Biol Med., 55: 109 - 118.

Hatanaka, H.; Hanyu, H.; Fukasawa, R.; Hirao, K.; Shimizu, S.; Kanetaka, H. and Iwamoto, T. (2015). Differences in Peripheral Oxidative Stress Markers in A Lzheimerfs Disease, Vascular Dementia and Mixed Dementia Patients. Geriatr. Gerontol. Int., 15: 53 - 58. 96. Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y. and Dong, W.(2016). ROS and ROS-mediated Cellular Signaling. Oxid. Med. Cell. Longev, 4350965: 1 - 19.

Similar Articles

You may also start an advanced similarity search for this article.