Hepatoprotective Effect of Alcoholic Extract of Ficus carica Leaves Against Cypermethrin-Induced Liver Toxicity in Male Albino Rats
Main Article Content
Abstract
Cypermethrin (CYP), a synthetic pyrethroid, is recognized for its insecticidal properties but poses potential risks of hepatotoxicity. In traditional medicine, Ficus (F.) carica (common fig) leaves have historically been used for various therapeutic applications. This study aimed to evaluate the hepatoprotective effect of the methanolic extract of F. carica leaves against CYP-induced liver damage in adult male albino rats (Rattus norvegicus). The animals (n=30), 8-12 weeks old and weighing 200-250 g, were randomly divided into five experimental groups (n=6) and treated as follows: the negative control group received distilled water; the CYP-Only group was exposed to 4.74 mg/kg BW for 45 days; the CYP+post-treatment group received the same CYP dosage followed by F. carica methanolic leaf extract at 500 mg/kg BW orally for two weeks; the pre-treatment+CYP group received F. carica methanolic leaf extract at 500 mg/kg BW orally for two weeks followed by CYP exposure for 45 days; and the F. carica extract-Only group was administered the methanolic leaf extract at 500 mg/kg BW orally for two weeks. At the end of the experiment, serum and liver samples were analyzed for biochemical and histopathological changes. CYP-Only exposed group showed significantly increased serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) and caspase-3 levels (P<0.05). Histopathological examination in group exposed CYP only revealed liver damages as evidenced by central vein congestion, scattered perivascular mononuclear cell infiltration, prominence of Kupffer cells, nuclear pyknosis, and severe hepatocytic necrosis. Treatment with F. carica leaf extract, either before or after CYP exposure, as well as solely with F. carica leaf extract, ameliorated both the biochemical and histological indices of liver damage. The findings suggest that the methanolic extract of F. carica leaves provides promising hepatoprotective effects against CYP-induced liver damage in albino rats, likely via its antioxidative properties.
Received: 15 November 2023
Revised: 30 November 2023
Accepted: 27 December 2023
Published: 28 December 2023
Downloads
Article Details
How to Cite
References
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. The impact of permethrin and cypermethrin on plants, soil enzyme activity, and microbial communities. Int J Mol Sci. 2023;24(3):2892. 10.3390/ijms24032892 https://doi.org/10.3390/ijms24032892
Meena S, Kumari V, Lata RK. Evaluation of Residual Toxicity of Synthetic Pyrethroids in the Environment. In: Arora S, Kumar A, Ogita S, Yau YY, editors. Innovations in Environmental Biotechnology. Singapore: Springer Nature; 2022. p. 851-867. https://doi.org/10.1007/978-981-16-4445-0_36
Zhou L, Zhou M, Tan H, Xiao M. Cypermethrin-induced cortical neurons apoptosis via the Nrf2/ARE signaling pathway. Pestic Biochem Physiol. 2020;165:104547. https://doi.org/10.1016/j.pestbp.2020.02.013
Seven B, Yalçin E, Acar A. Investigation of cypermethrin toxicity in Swiss albino mice with physiological, genetic and biochemical approaches. Sci Rep. 2022;12(1):1-15. https://doi.org/10.1038/s41598-022-15800-8
Rashid U, Qureshi IZ, Jan S, Khalid T, Khan DA. Preventive effects of selenium against cypermethrin induced haematological toxicity in Sprague-Dawley rats. World J Biol Pharm Heal Sci. 2022;12(01):018-027. https://doi.org/10.30574/wjbphs.2022.12.1.0115
Özok N. Effects of cypermethrin on antioxidant enzymes and lipid peroxidation of Lake Van fish (Alburnus tarichi). Drug Chem Toxicol. 2020;43(1):51-56. https://doi.org/10.1080/01480545.2019.1660363
Yaji A, Ogueji EO, Ekpenyong JJ. Sublethal behavioral and biochemical toxicity of cypermethrin in juvenile in a static bioassay. Fish Aquat Life. 2021;29(3):148-157. https://doi.org/10.2478/aopf-2021-0016
Kathim AS, Al-Aitte S. Cypermethrin insecticide induced histopathological alteration in testis and ovary of males and female mice. Tex J Agric Biol Sci. 2022;6:10-17.
Bhatt P, Rene ER, Huang Y, Wu X, Zhou Z, Li J, et al. Indigenous bacterial consortium-mediated cypermethrin degradation in the presence of organic amendments and Zea mays plants. Environ Res. 2022;212:113137. https://doi.org/10.1016/j.envres.2022.113137
Özdemir S, Arslan H. circRNA-based biomarker candidates for acute cypermethrin and chlorpyrifos toxication in the brain of zebrafish (Danio rerio). Chemosphere. 2022;298:134330.
https://doi.org/10.1016/j.chemosphere.2022.134330
Odo GE, Agwu JE, Newze N, Nwadinigwa A, Onyeke CC, Nzekwe U, Ikegbunam C. Toxicity and effects of fig (Ficus carica) leaf aqueous extract on haematology and some biochemical indices of wistar albino rats (Rattus norvegicus). J Med Plants Res. 2016;10(22):298-305.
Rashid A, Khan AA, Dar SH, Nabi NG, Teli AAR. Phytochemical and therapeutic properties of Ficus carica L inn.: An overview. Int J Pharma Sci Res. 2017;2:16-23.
Badgujar S, Patel V, Bandivdekar A, Mahajan R. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm Biol. 2014;52(11):1487-1503. https://doi.org/10.3109/13880209.2014.892515
Shahrajabian MH, Sun W, Cheng Q. A review of chemical constituents, traditional and modern pharmacology of fig (Ficus carica L.), a super fruit with medical astonishing characteristics. Pol J Agron. 2021;44:22-29.
Mawa S, Husain K, Jantan I. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities. Evid Based Complement Alternat Med. 2013;2013:974256. https://doi.org/10.1155/2013/974256
Teruel-Andreu C, Andreu-Coll L, López-Lluch D, Sendra E, Hernández F, Cano-Lamadrid M. Ficus carica fruits, by-products and based products as potential sources of bioactive compounds: A review. Agron. 2021;11(9):1834. https://doi.org/10.3390/agronomy11091834
Hajam TA, Saleem H. Phytochemistry, biological activities, industrial and traditional uses of fig (Ficus carica): A review. Chem. Biol Interact. 2022;368:110237. https://doi.org/10.1016/j.cbi.2022.110237
Aziz FM, Bakr HA. The Effect of cypermethrin and/or cyhalothrin on the histological structure of the testis of albino rats. Raf J Sci. 2010;21(1E):1-8. https://doi.org/10.33899/rjs.2010.38217
Ali-Duliami LH. Histopathological effects of supercypermethrin in liver of albino rats. Tikrit J Pure Sci. 2023;28(4):1-12. https://doi.org/10.25130/tjps.v28i4.1525
Yasser AG. Haematological and micronuclei alterations in common carp Cyprinus carpio exposed to cypermethrin. J Thi-Qar Sci. 2012; 3(3):37-46.
Hameed BK, Obayes AK, Ebraheem AH. Histological assessment for the effect of Cypermethrin in the skin of local breed rabbits. Tikrit J Pure Sci. 2020;25(2): 5-8. https://doi.org/10.25130/tjps.v25i2.227
AlMamoory MH, Al-Mayaly IK. Biodegradation of cypermethrin by two isolates of Pseudomonas aeruginosa. Iraqi J Sci. 2017; 58(4C):2309-2321. https://doi.org/10.24996/ijs.2017.58.4C.6
Hasan SA, Al-Rikaby AA. Study the ability of rosemary leaf ethanol extract to protect male rabbits' liver and kidney against poisoning cypermethrin. Bas J Vet Res. 2022;21(3):58-70.
https://doi.org/10.23975/bjvetr.2022.175775
Shaher WS, Alkhafaji NT. The protective effect of common fig (Ficus carica L.) leaves extract on testes of white rats (Rattus norvegicus) against paracetamol (Acetaminophen) drug. Tikrit J Pure Sci. 2020; 25(6): 42-49. https://doi.org/10.25130/tjps.v25i6.310
Shafeeq MH, Omar-Zahid LA, Sidkey BAJ. The antimicrobial activity of Carissa carandas L., Ficus carica L., and Olea europaeae L. leaves extracts on growth of some pathogenic microorganisms. Al-Nahrain J Sci. 2014; 17(4): 144-153. https://doi.org/10.22401/JNUS.17.4.19
Al-Maliki ADM. Isolation and Identification of Tannins from Ficus carica L. Leaves and Study of Their Medicinal Activity Against Pathogenic Bacteria. J Thi-Qar Sci. 2012;3(3): 96-106.
Ali SH. Characterization of Microsatellite Loci in different Fig (Ficus carica L.) Landraces in Duhok and Erbil Provinces in Kurdistan Region-Iraq. Zanco J Pure Appl Sci. 2019;31(2):48-56.
https://doi.org/10.21271/ZJPAS.31.2.7
Javed A, Iffat K, Salman K, Danish I. Evaluation of antioxidant and antimicrobial activity of Ficus carica leaves: an in vitro approach. J Plant Pathol Microbiol. 2013;4(1).
Hafes ESE. Reproduction and breeding Techniques of Laboratory Animals. Philadelphia: Lea and Febiges; 1970.
Dixon WJ. Efficient analysis of experimental observations. Ann Rev Pharmacol Toxicol. 1980;20:441-462. https://doi.org/10.1146/annurev.pa.20.040180.002301
Al-Zuhairi AH, Al-Ani JMK, Ibrahim SN. Toxicological effects of aqueous extract of Calotropis procera leaves in experimentally poisoned rabbits. Iraqi J Vet Med. 2020;44(1):46-56.
https://doi.org/10.30539/ijvm.v44i1.934
Abdel-Razik RK, Mosallam EM, Hamed NA, Badawy ME, Abo-El-Saad MM. Testicular deficiency associated with exposure to cypermethrin, imidacloprid, and chlorpyrifos in adult rats. Environ Toxicol Pharmacol. 2021;87:103724. https://doi.org/10.1016/j.etap.2021.103724
Hattat AT. Immunopathological, Histopathological and Genotoxicity in Glyphosate Exposed Mice Treated with Probiotics [Thesis]. Baghdad: University of Baghdad; 2019.
Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56-63. https://doi.org/10.1093/ajcp/28.1.56
Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 6th ed. Philadelphia : Churchill Livingstone Elsevier; 2008. 744 p.
SAS. Statistical Analysis System, User's Guide. 9.6th ed. Cary (NC): SAS Institute Inc.; 2018.
Atshan DA, Zalzala MH. Possible Protective Effect of Low Dose of Papaverine on ANIT Induce Cholestasis in Rat. Iraqi J Pharm Sci. 2023;32(Suppl.):118-126.
https://doi.org/10.31351/vol32issSuppl.pp118-126
Gabriel UU, Edori OS, Egobueze EC. Plasma enzymes and electrolytes in Heterobranchus bidorsalis treated with cypermethrin. Biochem Anal Biochem. 2019;8(380):2161-1009.
Araak JK. The Protective Role of Date Palm Pollen (Phoenix dactylifera L.) on Liver Function in Adult Male Rats Treated with Carbon Tetrachloride. Iraqi J Vet Med. 2012;36(0E):132-142.
https://doi.org/10.30539/iraqijvm.v36i0E.409
Nwankwo RC, Ibegbu MD, Onyekwelu KC, Ejezie CS, Ikekpeazu JE, Ejezie FE. Biochemical and histopathological effects of sub-acute exposure of albino rats to fumigants-dichlorvos and cypermethrin. Interdiscip Toxicol. 2019;12(4):180. https://doi.org/10.2478/intox-2019-0022
Poonam B, Hajare SW, Ingole RS, Ingawale MV, Payal R. Protective effect of Curculigo orchioides on hemato-biochemical alterations induced by cypermethrin subacute toxicity in wistar rats. Pharma Innov J. 2019;8(17):482-485.
Afolabi OK, Aderibigbe FA, Folarin DT, Arinola A, Wusu AD. Oxidative stress and inflammation following sub-lethal oral exposure of cypermethrin in rats: Mitigating potential of epicatechin. Heliyon. 2019; 5(8). https://doi.org/10.1016/j.heliyon.2019.e02274
Mossa ATH, Ibrahim FM, Mohafrash SM, Abou Baker DH, El Gengaihi S. Protective effect of ethanolic extract of grape pomace against the adverse effects of cypermethrin on weanling female rats. Evid Based Complement Alternat Med. 2015;381919. https://doi.org/10.1155/2015/381919
Hussain S, Ashafaq M, Alshahrani S, Bokar IA, Siddiqui R, Alam MI, et al. Hepatoprotective effect of curcumin nano-lipid carrier against cypermethrin toxicity by countering the oxidative, inflammatory, and apoptotic changes in wistar rats. Molecules. 2023;28(2):881. https://doi.org/10.3390/molecules28020881
Hussain S, Jali AM, Alshahrani S, Khairat KHM, Siddiqui R, Alam MI, et al. Hepatoprotective and antioxidant effects of nanopiperine against Cypermethrin via mitigation of oxidative stress, inflammations and gene expression using qRT-PCR. Int J Mol Sci. 2023;24(20):15361.
https://doi.org/10.3390/ijms242015361
Ozougwu JC. Physiology of the liver. Int J Res Pharm Biosci. 2017;4(8):13-24.
https://doi.org/10.20546/ijcrbp.2017.411.004
Aseervatham GSB, Ananth DA, Sivasudha T. The liver: oxidative stress and dietary antioxidants. In The liver Academic Press. 2018; 239-246. https://doi.org/10.1016/B978-0-12-803951-9.00020-3
Farooq SA, Singh R, Saini V. Evaluation of phytochemical constituents and antioxidant potential of hydro-alcoholic and aqueous extracts of L. and L. Herba Polonica. Herba Pol. 2019;65(4):7-17.
https://doi.org/10.2478/hepo-2019-0021
Mohafrash SMM, Mossa ATH. Herbal syrup from chicory and artichoke leaves ameliorate liver damage induced by deltamethrin in weanling male rats. Environ Sci Pollut Res. 2020;27(7):7672-7682.
https://doi.org/10.1007/s11356-019-07434-7
Ahmed RM, Mohammed AK. Role of Sodium Butyrate Supplement on Reducing Hepatotoxicity Induced by Lead Acetate in Rats. Iraqi J Vet Med. 2022;46(2):29-35. https://doi.org/10.30539/ijvm.v46i2.1408
Al-Zeiny SS, AL-Rekabi FM, Abbas DA. The role of oily and methanolic extracts of Phoenix dactylifera leaves in ameliorating CCl4 cytotoxicity in male rats. Iraqi J Vet Med. 2020;44(E0):88-93.
https://doi.org/10.30539/ijvm.v44i(E0).1027
Sankar P, Telang AG, Manimaran A. Protective effect of curcumin on cypermethrin-induced oxidative stress in Wistar rats. Exp Toxicol Pathol. 2012;64(5):487-493. https://doi.org/10.1016/j.etp.2010.11.003
Abdul-Hamid M, Moustafa N, Mowafy L. Cypermethrin-induced histopathological, ultrastructural and biochemical changes in liver of albino rats: The protective role of propolis and curcumin. Beni-Suef Univ. J. Basic Appl. Sci. 2017;6(2):160-173. https://doi.org/10.1016/j.bjbas.2017.03.002
Khan A, Faridi HA, Ali M, Khan MZ, Siddique M, Hussain I, et al. Effects of cypermethrin on some clinico-hemato-biochemical and pathological parameters in male dwarf goats (Capra hircus). Exp Toxicol Pathol. 2009;61(2):151-160. https://doi.org/10.1016/j.etp.2008.07.001
Al-Autaish HHN. Clinical study on toxicity of cypermethrin in Arrabi sheep [Thesis]. Basrah, Iraq: University of Basrah; 2010.
Kanbur M, Eraslan G, Ince S, Altintaş L, BC L. The effects of propetamphos, cypermethrin and propetamphos-cypermethrin combination on some biochemical and histopathological parameters in mice. Kafkas Univ Vet Fak Derg. 2015;21(2):187-194. https://doi.org/10.9775/kvfd.2014.12004
Rajendrakumar T, Rao S, Satyanarayana ML, Narayanaswamy HD, Byregowda SM, Purushotham KM. Cisplatin induced histopathological changes in the liver and its amelioration by Andrographis paniculata. Pharm Innov J. 2020;9(5):46-56. https://doi.org/10.22271/tpi.2020.v9.i5b.4627
Abd Al-Zahra JI, Ismael DK, Al-Shawi NN. Preventive Effects of Different Doses of Pentoxyfilline Against CCl4-Induced Liver Toxicity in Rats. Iraqi J Pharm Sci. 2009;18(Suppl.):39-45.
https://doi.org/10.31351/vol18issSuppl.pp39-45
Slevin E, Baiocchi L, Wu N, Ekser B, Sato K, Lin E, et al. Kupffer cells: inflammation pathways and cell-cell interactions in alcohol-associated liver disease. Am J Pathol. 2020;190(11):2185-2193.
https://doi.org/10.1016/j.ajpath.2020.08.014
Bennett H, Troutman TD, Sakai M, Glass CK. Epigenetic regulation of Kupffer cell function in health and disease. Front Immunol. 2021;11:609618. https://doi.org/10.3389/fimmu.2020.609618
Hameed HA, Hassan AF. The prophylactic anti-inflammatory effect of omega-7 against paracetamol-induced liver injury in rats. Iraqi J Vet Med. 2022;46(2):43-47. https://doi.org/10.30539/ijvm.v46i2.1412
Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology. 2021;163(3):250-261.
https://doi.org/10.1111/imm.13320
Srivastava BD, Srivastava M, Srivastav SK., Suzuki N, Srivastav AK. Cypermethrin-induced liver histopathology in rat: Protective role of jamun seed and orange peel extracts. Iranian J Toxicol. 2018;12(4):25-30. https://doi.org/10.32598/IJT.12.4.74.7
Taha MA, Badawy ME, Abdel-Razik RK., Younis HM, Abo-El-Saad MM. Mitochondrial dysfunction and oxidative stress in liver of male albino rats after exposing to sub-chronic intoxication of chlorpyrifos, cypermethrin, and imidacloprid. Pesticide Biochemistry and Physiology. 2021; 178, 104938.
https://doi.org/10.1016/j.pestbp.2021.104938
Shuklan P, Raj A, Chauhan K., Madan P, Rani S. Systematic toxicity of cypermethrin and alterations in behavior of albino rats. ACS omega. 2023;8(16):14766-14773. https://doi.org/10.1021/acsomega.3c00817
Saeed F, Iqbal R. Impact of cypermethrin on blood profile, tissue redox parameters and the observation of histopathological changes in the liver of Rabbit (Oryctolagus cuniculus). Pure Appl Biol. 2021;11(2):468-482. https://doi.org/10.19045/bspab.2022.110046
Hira S, Gulfraz M, Naqvi SS, Qureshi RU, Gul H. Protective effect of leaf extract of Ficus carica L. against carbon tetrachloride-induced hepatic toxicity in mice and HepG2 cell line. Trop J Pharm Res. 2021;20(1):113-119. https://doi.org/10.4314/tjpr.v20i1.17
Lalihatu MR, Sudharmono U. Effectiveness of boiled cherry leaf (muntingia calabura L) and figs leaves (Ficus carica) toward SGOT SGPT serum of male wistar strain rats with acute hepatitis models. Int Sch Conf Abst Proceed. 2019;7(1):716-726. https://doi.org/10.35974/isc.v7i1.2076
Maqsood S, Zulfiqar T, Qazi Z us S, Muzaffar T, Jaleel S, Alam SS. Comparison of cardioprotective effects of amlodipine, Ficus carica leaf and fruit extracts on histopathological profile of myocarditis caused by doxorubicin in rat model. Annals KEMU. 2022;28(Special Issue (Jul, Sep):329-334.
Ayoub L, Hassan F, Hamid S, Abdelhamid Z, Souad A. Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinformation. 2019;15(3):226-232. https://doi.org/10.6026/97320630015226
Purnamasari R, Winarni D, Permanasari AA, Agustina E, Hayaza S, Darmanto W. Anticancer activity of methanol extract of Ficus carica leaves and fruits against proliferation, apoptosis, and necrosis in Huh7it Cells. Cancer Informatics. 2019;18,1-7. https://doi.org/10.1177/1176935119842576
Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as Anticancer Agents. Nutrients. 2020;12(2):457. doi: https://doi.org/10.3390/nu12020457
Li Z, Yang Y, Liu M, Zhang C, Shao J, Hou X, et al. A comprehensive review on phytochemistry, bioactivities, toxicity studies, and clinical studies on Ficus carica Linn. leaves. Biomed Pharmacother. 2021;137:111393. https://doi.org/10.1016/j.biopha.2021.111393