An Insight into Genetic Diversity and Risk Factors of Ovine and Caprine Babesiosis in Erbil Governorate, Northern of Iraq
Keywords:
risk factors, molecular, babesiosis, sheep, goatsAbstract
Ovine and caprine babesiosis is a significant tick-borne disease affecting small ruminants, causing economic losses and health challenges in endemic regions such as northern Iraq. This study aimed to determine the prevalence, molecular characteristics, and associated risk factors of Babesia spp. infections in small ruminants in Erbil Province, Iraq. A total of 235 animals (125 sheep and 110 goats) were clinically examined and sampled between October 2024 and March 2025. Blood smears were screened microscopically, and DNA was extracted from the blood sample collected for molecular detection. PCR targeting the 18S rRNA gene of Babesia spp., B. ovis, and B. motasi was carried out using the extracted DNA from the blood samples. Microscopic examination results revealed infection rates to be 16.8% in sheep and 8.2% in goats, while PCR-based detection showed notably higher prevalence, 28.8% and 12.7%, respectively. Sequencing and phylogenetic analysis of B. ovis isolates confirmed strong genetic similarity with regional strains from Turkey, Iran, and Iraq. Additionally, the presence of B. ovis sequences clustering with those from non-ruminant hosts (e.g., rabbits and horses) was observed. Notably, Babesia motasi was not detected in any of the examined samples. Risk factor analysis demonstrated significant associations between infection and tick infestation, lack of acaricide use, and prior exposure to ticks. Specifically, tick-infested animals exhibited markedly higher infection rates, with odds ratios of 9.93 for sheep and 4.16 for goats. However, no statistically significant differences were observed concerning sex, age, or grazing system. These findings underscore the continued threat of Babesia infections among small ruminants in northern Iraq and highlight the need for improved tick control strategies to mitigate disease transmission.
Received: xx May 2025
Revised: xx August 2025
Accepted: xx August 2025
Published online first: xx October 2025
References
1. Ozubek S, Ulucesme MC, Suarez CE, Bastos RG, Aktas M. Assessment of Babesia ovis pathogenicity in goats: implications for transmission dynamics and host resistance. Front Cell Infect Microbiol. 2024;14:1480347. https://doi.org/10.3389/fcimb.2024.1480347
2. Aziz KJ, Hamadamin BQ. Epidemiological and molecular study of Theileria spp. in sheep and goats in Erbil, Iraq. Trop Anim Health Prod. 2025;57(2):1–11. https://doi.org/10.1007/s11250-025-04330-w
3. Abdullah SH, Mohammed AA. Babesiosis of small ruminants in Sulaimani city, Kurdistan–Iraq. Al-Qadisiyah J Vet Med Sci. 2014;13(2):39-43. http://dx.doi.org/10.29079/vol13iss2art300
4. Aziz KJ. Morphological and molecular identification of Ixodid ticks that infest ruminants in Erbil province, Kurdistan Region-Iraq. Passer J Basic Appl Sci. 2022;4(1):8–13. https://doi.org/10.24271/psr.2021.301552.1084
5. Friedhoff KT. Tick-borne diseases of sheep and goats caused by Babesia, Theileria or Anaplasma spp. Parassitologia. 1997;39(2):99-109.
6. Friedhoff KT. Transmission of Babesia. In: Ristic M, editor. Babesiosis of Domestic Animals and Man. Boca Raton, FL: CRC Press; 2018. p. 23-52. http://dx.doi.org/10.1201/9781351070027-2
7. Sulaiman EG, Arslan SH, Al-Obaidi QT, Daham E. Clinical, haematological and biochemical studies of babesiosis in native goats in Mosul. Iraqi J Vet Sci. 2010;24(1):31–35. http://dx.doi.org/10.33899/ijvs.2010.5571
8. Ranjbar-Bahadori S, Eckert B, Omidian Z, Shirazi NS, Shayan P. Babesia ovis as the main causative agent of sheep babesiosis in Iran. Parasitol Res. 2012;110(4):1531-1536. https://doi.org/10.1007/s00436-011-2658-z
9. Aziz KJ, Waly TA, Shekhmhamad OQ. Molecular epidemiology of babesiosis in dairy cattle in Erbil Province, Iraq. Passer J Basic Appl Sci. 2025;7(1):29–36. https://doi.org/10.24271/psr.2025.214314
10. Gholami S, Laktarashi B, Shiadeh MM, Spotin A. Genetic variability, phylogenetic evaluation and first global report of Theileria luwenshuni, T. buffeli, and T. ovis in sheepdogs in Iran. Parasitol Res. 2016;115(5):2125-2130. https://doi.org/10.1007/s00436-016-5005-6
11. Kawan MH. Molecular surveillance and phylogenetic analysis of Theileria annulata in bovine at Baghdad city/Iraq. Iraqi J Vet Med. 2019;43(1):93-101. https://doi.org/10.30539/iraqijvm.v43i1.479
12. Thrusfield M, editor. Veterinary epidemiology. 4th edition. John Wiley & Sons; 2018. 864 p. https://doi.org/10.1002/9781118280249
13. Coles EH. Veterinary clinical pathology. USA: W. B. Saunders; 1967. p. 128.
14. Inokuma H, Yoshizaki Y, Shimada Y, Sakata Y, Okuda M, Onishi T. Epidemiological survey of Babesia species in Japan performed with specimens from ticks collected from dogs and detection of new Babesia DNA closely related to Babesia odocoilei and Babesia divergens DNA. J Clin Microbiol. 2003;41(8):3494-3498. https://doi.org/10.1128/jcm.41.8.3494-3498.2003
15. Aktaş M, Altay K, Dumanlı N. Development of a polymerase chain reaction method for diagnosis of Babesia ovis infection in sheep and goats. Vet Parasitol. 2005;133(4):277-281. https://doi.org/10.1016/j.vetpar.2005.05.057
16. Zhou J, Li Z, Zhou Z, Ma Y, Hu J, Dan X, et al. Epidemiological and molecular characteristics of Piroplasmids and Anaplasma spp. in Tan Sheep, Ningxia, Northwest China. Transbound Emerg Dis. 2024;2024(1):2529855. https://doi.org/10.1155/2024/2529855
17. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. https://doi.org/10.1093/nar/gkh340
18. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027. https://doi.org/10.1093/molbev/msab120
19. Payne R, Murray D, Harding S, Baird D, Soutou D. GenStat for Windows 12th Edition Introduction.UK: VSN International; 2009.
20. Arwa RK, Kawan MH. Microscopic examination of ovine babesiosis at Baghdad city/Iraq. Iraqi J Agric Sci. 2022;53(4):798–801. https://doi.org/10.36103/ijas.v53i4.1591
21. Al-lahaibi BY, Suleiman EG. Microscopic identification of Babesia spp in sheep in Mosul City. Bas J Vet Res. 2024;23(3):130-140. https://doi.org/10.23975/bjvr.2024.151632.1112
22. Renneker S, Abdo J, Bakheit MA, Kullmann B, Beyer D, Ahmed J, et al. Coinfection of sheep with Anaplasma, Theileria and Babesia species in the Kurdistan Region, Iraq. Transbound Emerg Dis. 2013;60(Suppl 2):113–8. https://doi.org/10.1111/tbed.12148
23. Abdullah SH, Ali SA. Molecular study and phylogeny of Babesia spp. in native sheep from Sulaimani Governorate/Northern Iraq. Iraqi J Agric Sci. 2021;52(5):1077–83. https://doi.org/10.36103/ijas.v52i5.1445
24. Al-Karkhi EMH, Al-Amery AM, Faraj AA. The relationship of the hard ticks in transmission of some Haemoprotozoa in sheep of Baquba city. Iraqi J Vet Sci. 2013;27(2):81-85. http://dx.doi.org/10.33899/ijvs.2013.82782
25. Razmi GR, Naghibi A, Aslani MR, Dastjerdi K, Hossieni H. An epidemiological study on Babesia infection in small ruminants in Mashhad suburb, Khorasan province, Iran. Small Rumin Res. 2003;50(1–2):39–44. http://dx.doi.org/10.1016/S0921-4488(03)00107-X
26. ALani AN, Yousif AA. Detection of Theileria equi in Baghdad racing horses using hematological and molecular assay. Iraqi J Vet Med. 2023;47(1):52-59. https://doi.org/10.30539/ijvm.v47i1.1501
27. Habibi G, Sepahvand-Mohammadi E, Afshari A, Bozorgi S. Molecular detection of Theileria spp. and Babesia ovis infection in sheep in Baneh, Iran. Arch Razi Inst. 2020;75(2):289–296. https://doi.org/10.22092/ari.2019.125136.1297
28. Shahbazi A, Fallah E, Mamagani AJ, Khanmohammadi M, Nematollahi A, Bazmani A. Identification of Babesia species in sheep isolated from villages of East Azerbaijan by semi-nested PCR. J Pure Appl Microbiol. 2013;7(1):201–205.
29. Bozan M, Ulucesme MC, Eyvaz A, Ceylan O, Sevinc F, Aktas M, et al. Serological and molecular survey of Babesia ovis in healthy sheep in Türkiye. Parasitologia. 2024;4(2):162–171. https://doi.org/10.3390/parasitologia4020014
30. Ulucesme MC, Ozubek S, Karoglu A, Turk ZI, Olmus I, Irehan B, et al. Small ruminant piroplasmosis: high prevalence of Babesia aktasi n. sp. in goats in Türkiye. Pathogens. 2023;12(4):514. https://doi.org/10.3390/pathogens12040514
31. Sajid M, Naqvi SAH, Riaz M, Umar UUD, Nasreen N, Khan A, et al. Molecular detection of Babesia ovis and blood parameters’ investigation reveal hematological and biochemical alterations in babesiosis-infected Lohi sheep in Multan, Pakistan. Open Vet J. 2023;13(11):1400. https://doi.org/10.5455/OVJ.2023.v13.i11.2
32. Dyab AK, Mohamed SAA, Abdel-Aziz FM, Gareh A, Osman F, Elgohary FA, et al. Microscopic and molecular detection of piroplasms among sheep in Upper Egypt. Front Vet Sci. 2024;11:1373842. https://doi.org/10.3389/fvets.2024.1373842
33. Badawi NM, Yousif AA. Survey and molecular study of Babesia gibsoni in dogs of Baghdad province, Iraq. Iraqi J Vet Med. 2020;44(E0):34-41. https://doi.org/10.30539/ijvm.v44i(e0).1019
34. Perveen N, Muzaffar SB, Al-Deeb MA. Ticks and tick-borne diseases of livestock in the Middle East and North Africa: a review. Insects. 2021;12(1):83. https://doi.org/10.3390/insects12010083
35. Johnson N, Paul Phipps L, McFadzean H, Barlow AM. An outbreak of bovine babesiosis in February, 2019, triggered by above average winter temperatures in southern England and co-infection with Babesia divergens and Anaplasma phagocytophilum. Parasit Vectors. 2020;13:1-5. https://doi.org/10.1186/s13071-020-04174-3
36. Gebrekidan H, Hailu A, Kassahun A, Rohoušová I, Maia C, Talmi-Frank D,et al. Theileria infection in domestic ruminants in northern Ethiopia. Vet Parasitol. 2014;200(1-2):31-38. https://doi.org/10.1016/j.vetpar.2013.11.017
37. Sabber KH, A,aiz NN. Molecular detection of Babesia bovis in cattle in AL-Qadisiyah province. Iraqi J Vet Med. 2016;40(2):155-158. https://doi.org/10.30539/iraqijvm.v40i2.128
38. Atif FA, Zaman MA, Hussain K, Qamar MF, Sajid MS, Iqbal U,et al. First molecular surveillance and estimation of risk factors of Anaplasma marginale infection among indigenous, crossbred and exotic cattle. J Anim Plant Sci. 2021;31(3):913-917. http://dx.doi.org/10.36899/JAPS.2021.3.0281
39. Atif FA, Abbas RZ, Mehnaz S, Qamar MF, Hussain K, Nazir MU, et al. First report on molecular surveillance based on duplex detection of Anaplasma marginale and Theileria annulata in dairy cattle from Punjab, Pakistan. Trop Anim Health Prod. 2022;54(2):155. http://dx.doi.org/10.1007/s11250-022-03158-y
40. Haji I, Simuunza M, Jiang N, Chen Q. Tick populations and molecular detection of selected tick-borne pathogens in questing ticks from northern and central Tanzania. Exp Appl Acarol. 2023;90(3-4):389-407. https://doi.org/10.1007/s10493-023-00816-0
41. Nasreen N, Niaz S, Khan A, Ayaz S, Rashid M, Khattak I, et al. Molecular characterization of ticks infesting livestock in Khyber Pakhtunkhwa Province, Pakistan. Int J Acarol. 2020;46(3):165-170. https://doi.org/10.1080/01647954.2020.1734082
42. Naveed M, Ijaz M, Ahmed A, Ghumman NZ, Ishaq M, Muzammil I, Javed MU. Molecular evidence, risk factors analysis, and hematological alterations associated with Theileria spp. spillover in captive wild mouflon sheep in Punjab, Pakistan. Iran J Vet Res. 2022;23(4):349-357. https://doi.org/10.22099/ijvr.2022.43496.6362
43. Hayati MA, Hassan SM, Ahmed SK, Salih DA. Prevalence of ticks (Acari: Ixodidae) and Theileria annulata infection of cattle in Gezira State, Sudan. Parasite Epidemiol Control. 2020;10:e00148. https://doi.org/10.1016/j.parepi.2020.e00148
44. Ceylan O, Byamukama B, Ceylan C, Galon EM, Liu M, Masatani T, Xuan X, Sevinc F. Tick-borne hemoparasites of sheep: a molecular research in Turkey. Pathogens. 2021;10(2):162. https://doi.org/10.3390/pathogens10020162
45. Aziz KJ, Al-Barwary LO. Epidemiological study of equine piroplasmosis (Theileria equi and Babesia caballi) by microscopic examination and competitive-ELISA in Erbil province, north-Iraq. Iran J Parasitol. 2019;14(3):404-412. https://pmc.ncbi.nlm.nih.gov/articles/PMC6815869/
46. Martínez-Flores WA, Palma-García JM, Caballero-Ortega H, Del Viento-Camacho A, López-Escamilla E, Martínez-Hernández F, et al. Genotyping Toxoplasma gondii with the B1 gene in naturally infected sheep from an endemic region in the Pacific coast of Mexico. Vector Borne Zoonotic Dis. 2017;17(7):495–502. https://doi.org/10.1089/vbz.2016.2085
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Iraqi Journal of Veterinary Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.