This is a preview and has not been published.

An Insight into Genetic Diversity and Risk Factors of Ovine and Caprine Babesiosis in Erbil Governorate, Northern of Iraq

Authors

Keywords:

risk factors, molecular, babesiosis, sheep, goats

Abstract

Ovine and caprine babesiosis is a significant tick-borne disease affecting small ruminants, causing economic losses and health challenges in endemic regions such as northern Iraq. This study aimed to determine the prevalence, molecular characteristics, and associated risk factors of Babesia spp. infections in small ruminants in Erbil Province, Iraq. A total of 235 animals (125 sheep and 110 goats) were clinically examined and sampled between October 2024 and March 2025. Blood smears were screened microscopically, and DNA was extracted from the blood sample collected for molecular detection. PCR targeting the 18S rRNA gene of Babesia spp., B. ovis, and B. motasi was carried out using the extracted DNA from the blood samples. Microscopic examination results revealed infection rates to be 16.8% in sheep and 8.2% in goats, while PCR-based detection showed notably higher prevalence, 28.8% and 12.7%, respectively. Sequencing and phylogenetic analysis of B. ovis isolates confirmed strong genetic similarity with regional strains from Turkey, Iran, and Iraq. Additionally, the presence of B. ovis sequences clustering with those from non-ruminant hosts (e.g., rabbits and horses) was observed. Notably, Babesia motasi was not detected in any of the examined samples. Risk factor analysis demonstrated significant associations between infection and tick infestation, lack of acaricide use, and prior exposure to ticks. Specifically, tick-infested animals exhibited markedly higher infection rates, with odds ratios of 9.93 for sheep and 4.16 for goats. However, no statistically significant differences were observed concerning sex, age, or grazing system. These findings underscore the continued threat of Babesia infections among small ruminants in northern Iraq and highlight the need for improved tick control strategies to mitigate disease transmission‎‎‎.

References

‎1.‎ Ozubek S, Ulucesme MC, Suarez CE, Bastos RG, Aktas M. Assessment ‎of Babesia ovis pathogenicity in goats: implications for ‎transmission dynamics and host resistance. Front Cell Infect ‎Microbiol. 2024;14:1480347. ‎https://doi.org/10.3389/fcimb.2024.1480347‎

‎2.‎ Aziz KJ, Hamadamin BQ. Epidemiological and molecular study of ‎Theileria spp. in sheep and goats in Erbil, Iraq. Trop Anim Health ‎Prod. 2025;57(2):1–11. https://doi.org/10.1007/s11250-025-‎‎04330-w

‎3.‎ Abdullah SH, Mohammed AA. Babesiosis of small ruminants in ‎Sulaimani city, Kurdistan–Iraq. Al-Qadisiyah J Vet Med Sci. ‎‎2014;13(2):39-43. http://dx.doi.org/10.29079/vol13iss2art300

‎4.‎ Aziz KJ. Morphological and molecular identification of Ixodid ticks ‎that infest ruminants in Erbil province, Kurdistan Region-Iraq. ‎Passer J Basic Appl Sci. 2022;4(1):8–13. ‎https://doi.org/10.24271/psr.2021.301552.1084‎

‎5.‎ Friedhoff KT. Tick-borne diseases of sheep and goats caused by ‎Babesia, Theileria or Anaplasma spp. Parassitologia. ‎‎1997;39(2):99-109.‎

‎6.‎ Friedhoff KT. Transmission of Babesia. In: Ristic M, editor. ‎Babesiosis of Domestic Animals and Man. Boca Raton, FL: CRC ‎Press; 2018. p. 23-52. http://dx.doi.org/10.1201/9781351070027-‎‎2‎

‎7.‎ Sulaiman EG, Arslan SH, Al-Obaidi QT, Daham E. Clinical, ‎haematological and biochemical studies of babesiosis in native ‎goats in Mosul. Iraqi J Vet Sci. 2010;24(1):31–35. ‎http://dx.doi.org/10.33899/ijvs.2010.5571‎

‎8.‎ Ranjbar-Bahadori S, Eckert B, Omidian Z, Shirazi NS, Shayan P. ‎Babesia ovis as the main causative agent of sheep babesiosis in Iran. ‎Parasitol Res. 2012;110(4):1531-1536. ‎https://doi.org/10.1007/s00436-011-2658-z

‎9.‎ Aziz KJ, Waly TA, Shekhmhamad OQ. Molecular epidemiology of ‎babesiosis in dairy cattle in Erbil Province, Iraq. Passer J Basic Appl ‎Sci. 2025;7(1):29–36. https://doi.org/10.24271/psr.2025.214314‎

‎10.‎ Gholami S, Laktarashi B, Shiadeh MM, Spotin A. Genetic variability, ‎phylogenetic evaluation and first global report of Theileria ‎luwenshuni, T. buffeli, and T. ovis in sheepdogs in Iran. Parasitol Res. ‎‎2016;115(5):2125-2130. https://doi.org/10.1007/s00436-016-‎‎5005-6

‎11.‎ Kawan MH. Molecular surveillance and phylogenetic analysis of ‎Theileria annulata in bovine at Baghdad city/Iraq. Iraqi J Vet Med. ‎‎2019;43(1):93-101. https://doi.org/10.30539/iraqijvm.v43i1.479

‎12.‎ Thrusfield M, editor. Veterinary epidemiology. 4th edition. John ‎Wiley & Sons; 2018. 864 p. ‎https://doi.org/10.1002/9781118280249‎

‎13.‎ Coles EH. Veterinary clinical pathology. USA: W. B. Saunders; 1967. ‎p. 128.‎

‎14.‎ Inokuma H, Yoshizaki Y, Shimada Y, Sakata Y, Okuda M, Onishi T. ‎Epidemiological survey of Babesia species in Japan performed with ‎specimens from ticks collected from dogs and detection of new ‎Babesia DNA closely related to Babesia odocoilei and Babesia ‎divergens DNA. J Clin Microbiol. 2003;41(8):3494-3498. ‎https://doi.org/10.1128/jcm.41.8.3494-3498.2003

‎15.‎ Aktaş M, Altay K, Dumanlı N. Development of a polymerase chain ‎reaction method for diagnosis of Babesia ovis infection in sheep and ‎goats. Vet Parasitol. 2005;133(4):277-281. ‎https://doi.org/10.1016/j.vetpar.2005.05.057‎

‎16.‎ Zhou J, Li Z, Zhou Z, Ma Y, Hu J, Dan X, et al. Epidemiological and ‎molecular characteristics of Piroplasmids and Anaplasma spp. in ‎Tan Sheep, Ningxia, Northwest China. Transbound Emerg Dis. ‎‎2024;2024(1):2529855. https://doi.org/10.1155/2024/2529855‎

‎17.‎ Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy ‎and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. ‎https://doi.org/10.1093/nar/gkh340

‎18.‎ Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary ‎genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027. ‎https://doi.org/10.1093/molbev/msab120‎

‎19.‎ Payne R, Murray D, Harding S, Baird D, Soutou D. GenStat for ‎Windows 12th Edition Introduction.UK: VSN International; 2009.‎

‎20.‎ Arwa RK, Kawan MH. Microscopic examination of ovine babesiosis ‎at Baghdad city/Iraq. Iraqi J Agric Sci. 2022;53(4):798–801. ‎https://doi.org/10.36103/ijas.v53i4.1591‎

‎21.‎ Al-lahaibi BY, Suleiman EG. Microscopic identification of Babesia ‎spp in sheep in Mosul City. Bas J Vet Res. 2024;23(3):130-140. ‎https://doi.org/10.23975/bjvr.2024.151632.1112‎

‎22.‎ Renneker S, Abdo J, Bakheit MA, Kullmann B, Beyer D, Ahmed J, et al. ‎Coinfection of sheep with Anaplasma, Theileria and Babesia species ‎in the Kurdistan Region, Iraq. Transbound Emerg Dis. ‎‎2013;60(Suppl 2):113–8. https://doi.org/10.1111/tbed.12148‎

‎23.‎ Abdullah SH, Ali SA. Molecular study and phylogeny of Babesia spp. ‎in native sheep from Sulaimani Governorate/Northern Iraq. Iraqi J ‎Agric Sci. 2021;52(5):1077–83. ‎https://doi.org/10.36103/ijas.v52i5.1445

‎24.‎ Al-Karkhi EMH, Al-Amery AM, Faraj AA. The relationship of the ‎hard ticks in transmission of some Haemoprotozoa in sheep of ‎Baquba city. Iraqi J Vet Sci. 2013;27(2):81-85. ‎http://dx.doi.org/10.33899/ijvs.2013.82782

‎25.‎ Razmi GR, Naghibi A, Aslani MR, Dastjerdi K, Hossieni H. An ‎epidemiological study on Babesia infection in small ruminants in ‎Mashhad suburb, Khorasan province, Iran. Small Rumin Res. ‎‎2003;50(1–2):39–44. http://dx.doi.org/10.1016/S0921-‎‎4488(03)00107-X

‎26.‎ ALani AN, Yousif AA. Detection of Theileria equi‎ in Baghdad racing ‎horses using‎ hematological and‎ molecular assay. Iraqi J Vet Med. ‎‎2023;47(1):52-59. https://doi.org/10.30539/ijvm.v47i1.1501

‎27.‎ Habibi G, Sepahvand-Mohammadi E, Afshari A, Bozorgi S. Molecular ‎detection of Theileria spp. and Babesia ovis infection in sheep in ‎Baneh, Iran. Arch Razi Inst. 2020;75(2):289–296. ‎https://doi.org/10.22092/ari.2019.125136.1297‎

‎28.‎ Shahbazi A, Fallah E, Mamagani AJ, Khanmohammadi M, Nematollahi ‎A, Bazmani A. Identification of Babesia species in sheep isolated ‎from villages of East Azerbaijan by semi-nested PCR. J Pure Appl ‎Microbiol. 2013;7(1):201–205.‎

‎29.‎ Bozan M, Ulucesme MC, Eyvaz A, Ceylan O, Sevinc F, Aktas M, et al. ‎Serological and molecular survey of Babesia ovis in healthy sheep in ‎Türkiye. Parasitologia. 2024;4(2):162–171. ‎https://doi.org/10.3390/parasitologia4020014‎

‎30.‎ Ulucesme MC, Ozubek S, Karoglu A, Turk ZI, Olmus I, Irehan B, et al. ‎Small ruminant piroplasmosis: high prevalence of Babesia aktasi n. ‎sp. in goats in Türkiye. Pathogens. 2023;12(4):514. ‎https://doi.org/10.3390/pathogens12040514

‎31.‎ Sajid M, Naqvi SAH, Riaz M, Umar UUD, Nasreen N, Khan A, et al. ‎Molecular detection of Babesia ovis and blood parameters’ ‎investigation reveal hematological and biochemical alterations in ‎babesiosis-infected Lohi sheep in Multan, Pakistan. Open Vet J. ‎‎2023;13(11):1400. https://doi.org/10.5455/OVJ.2023.v13.i11.2‎

‎32.‎ Dyab AK, Mohamed SAA, Abdel-Aziz FM, Gareh A, Osman F, ‎Elgohary FA, et al. Microscopic and molecular detection of ‎piroplasms among sheep in Upper Egypt. Front Vet Sci. ‎‎2024;11:1373842. https://doi.org/10.3389/fvets.2024.1373842‎

‎33.‎ Badawi NM, Yousif AA. Survey and molecular study of Babesia ‎gibsoni in dogs of Baghdad province, Iraq. Iraqi J Vet Med. ‎‎2020;44(E0):34-41. https://doi.org/10.30539/ijvm.v44i(e0).1019

‎34.‎ Perveen N, Muzaffar SB, Al-Deeb MA. Ticks and tick-borne diseases ‎of livestock in the Middle East and North Africa: a review. Insects. ‎‎2021;12(1):83. https://doi.org/10.3390/insects12010083‎

‎35.‎ Johnson N, Paul Phipps L, McFadzean H, Barlow AM. An outbreak of ‎bovine babesiosis in February, 2019, triggered by above average ‎winter temperatures in southern England and co-infection with ‎Babesia divergens and Anaplasma phagocytophilum. Parasit ‎Vectors. 2020;13:1-5. https://doi.org/10.1186/s13071-020-‎‎04174-3‎

‎36.‎ Gebrekidan H, Hailu A, Kassahun A, Rohoušová I, Maia C, Talmi-‎Frank D,et al. Theileria infection in domestic ruminants in northern ‎Ethiopia. Vet Parasitol. 2014;200(1-2):31-38. ‎https://doi.org/10.1016/j.vetpar.2013.11.017‎

‎37.‎ Sabber KH, A,aiz NN. Molecular detection of Babesia bovis in cattle ‎in AL-Qadisiyah province. Iraqi J Vet Med. 2016;40(2):155-158. ‎https://doi.org/10.30539/iraqijvm.v40i2.128‎

‎38.‎ Atif FA, Zaman MA, Hussain K, Qamar MF, Sajid MS, Iqbal U,et al. ‎First molecular surveillance and estimation of risk factors of ‎Anaplasma marginale infection among indigenous, crossbred and ‎exotic cattle. J Anim Plant Sci. 2021;31(3):913-917. ‎http://dx.doi.org/10.36899/JAPS.2021.3.0281‎

‎39.‎ Atif FA, Abbas RZ, Mehnaz S, Qamar MF, Hussain K, Nazir MU, et al. ‎First report on molecular surveillance based on duplex detection of ‎Anaplasma marginale and Theileria annulata in dairy cattle from ‎Punjab, Pakistan. Trop Anim Health Prod. 2022;54(2):155. ‎http://dx.doi.org/10.1007/s11250-022-03158-y

‎40.‎ Haji I, Simuunza M, Jiang N, Chen Q. Tick populations and molecular ‎detection of selected tick-borne pathogens in questing ticks from ‎northern and central Tanzania. Exp Appl Acarol. 2023;90(3-4):389-‎‎407. https://doi.org/10.1007/s10493-023-00816-0

‎41.‎ Nasreen N, Niaz S, Khan A, Ayaz S, Rashid M, Khattak I, et al. ‎Molecular characterization of ticks infesting livestock in Khyber ‎Pakhtunkhwa Province, Pakistan. Int J Acarol. 2020;46(3):165-170. ‎https://doi.org/10.1080/01647954.2020.1734082‎

‎42.‎ Naveed M, Ijaz M, Ahmed A, Ghumman NZ, Ishaq M, Muzammil I, ‎Javed MU. Molecular evidence, risk factors analysis, and ‎hematological alterations associated with Theileria spp. spillover ‎in captive wild mouflon sheep in Punjab, Pakistan. Iran J Vet Res. ‎‎2022;23(4):349-357. ‎https://doi.org/10.22099/ijvr.2022.43496.6362

‎43.‎ Hayati MA, Hassan SM, Ahmed SK, Salih DA. Prevalence of ticks ‎‎(Acari: Ixodidae) and Theileria annulata infection of cattle in Gezira ‎State, Sudan. Parasite Epidemiol Control. 2020;10:e00148. ‎https://doi.org/10.1016/j.parepi.2020.e00148

‎44.‎ Ceylan O, Byamukama B, Ceylan C, Galon EM, Liu M, Masatani T, ‎Xuan X, Sevinc F. Tick-borne hemoparasites of sheep: a molecular ‎research in Turkey. Pathogens. 2021;10(2):162. ‎https://doi.org/10.3390/pathogens10020162

‎45.‎ Aziz KJ, Al-Barwary LO. Epidemiological study of equine ‎piroplasmosis (Theileria equi and Babesia caballi) by microscopic ‎examination and competitive-ELISA in Erbil province, north-Iraq. ‎Iran J Parasitol. 2019;14(3):404-412. ‎https://pmc.ncbi.nlm.nih.gov/articles/PMC6815869/

‎46.‎ Martínez-Flores WA, Palma-García JM, Caballero-Ortega H, Del ‎Viento-Camacho A, López-Escamilla E, Martínez-Hernández F, et al. ‎Genotyping Toxoplasma gondii with the B1 gene in naturally ‎infected sheep from an endemic region in the Pacific coast of Mexico. ‎Vector Borne Zoonotic Dis. 2017;17(7):495–502. ‎https://doi.org/10.1089/vbz.2016.2085‎

Downloads

Published

2025-10-05

Issue

Section

Articles

How to Cite

An Insight into Genetic Diversity and Risk Factors of Ovine and Caprine Babesiosis in Erbil Governorate, Northern of Iraq. (2025). The Iraqi Journal of Veterinary Medicine. https://doi.org/10.30539/p3n78y94

Publication Dates