Responses of Poultry to Heat Stress and Mitigation Strategies During Summer in Tropical Countries: A Review
Main Article Content
Abstract
The poultry industry faces increasing challenges from heat stress caused by global warming, particularly in tropical regions. Heat stress, caused by rising environmental temperatures, undermines the health and productivity of poultry, resulting in significant economic losses. This review comprehensively addresses the physiological and behavioural responses of poultry to heat stress and explores the key mitigation strategies, categorized under genetics, management and feeding. Genetic approaches, like utilizing specific genes in breeding, show promise but require wider adoption. Management practices such as housing design, including orientation, insulation and ventilation, controlled lighting and thermal manipulation are critical to maintaining poultry in their thermoneutral zone. Furthermore, feeding strategies like feed restriction, dual feeding and nutritional manipulation have shown promise in reducing heat stress effects. In addition to feeding strategies, water management is also crucial for mitigating heat stress, especially in tropical areas. Ensuring sufficient water space, maintaining operating waterers, and keeping water cool are essential to encourage adequate drinking. Despite progress, further investigation is required to explore the synergistic effects of combined strategies to improve the resilience of poultry. This review highlights the urgent need for comprehensive approaches to mitigate heat stress in poultry to ensure sustainable productivity under the challenges of global warming
Received: 24 July 2024
Revised: 13 August 2024
Accepted: 24 September 2024
Published: 28 December 2024
Downloads
Article Details
How to Cite
References
1. Barrett NW, Rowland K, Schmidt CJ, Lamont SJ, Rothschild MF, Ashwell CM, et al. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens. Poult Sci. 2019;98(12):6684-92.
https://doi.org/10.3382/ps/pez541
2. Kennedy GM, Lichoti JK, Ommeh SC. Heat stress and poultry: adaptation to climate change, challenges and opportunities for genetic breeding in Kenya. J Agri Sci and Tech. 2022;21(1):49-61. https://doi.org/10.4314/jagst.v21i1.6
3. Nardone A, Ronchi B, Lacetera N, Ranieri MS, Bernabucci U. Effects of climate changes on animal production and sustainability of livestock systems. Lives Sci. 2010;130(1-3):57-69. https://doi.org/10.1016/j.livsci.2010.02.011
4. Teyssier JR, Brugaletta G, Sirri F, Dridi S, Rochell SJ. A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Front Physiol. 2022;13:1-17. https://doi.org/10.3389/fphys.2022.943612
5. Pius LO, Strausz P, Kusza S. Overview of poultry management as a key factor for solving food and nutritional security with a special focus on chicken breeding in east african countries. Biology. 2021;10(8). https://doi.org/10.3390/biology10080810
6. Papanikolaou Y, Fulgoni VL. Eggs Are Cost-Efficient in Delivering Several Shortfall Nutrients in the American Diet: A Cost-Analysis in Children and Adults. Nutrients. 2020; 12(8):1-13. https://doi.org/10.3390/nu12082406
7. Pal M, Molnár J. The Role of Eggs as an Important Source of Nutrition in Human Health. Int J Food Sci Agric. 2021;5(1):180-2.
https://doi.org/10.26855/ijfsa.2021.03.023
8. Melesse A. Significance of scavenging chicken production in the rural community of Africa for enhanced food security. Worlds Poult Sci J. 2014;70(3):593-606. https://doi.org/10.1017/S0043933914000646
9. Connolly G, Clark CM, Campbell RE, Byers AW, Reed JB, Campbell WW. Poultry Consumption and Human Health: How Much Is Really Known? A Systematically Searched Scoping Review and Research Perspective. Adv Nutr. 2022;13(6):2115-24. https://doi.org/10.1093/advances/nmac074
10. Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals. 2020;10(8):1266. https://doi.org/10.3390/ani10081266
11. Goo D, Kim JH, Park GH, Reyes JBD, Kil DY. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals. 2019;9(3). https://doi.org/10.3390/ani9030107
12. Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals. 2013;3(2):356-69. https://doi.org/10.3390/ani3020356
13. Abdel-Moneim AM, Shehata AM, Khidr RE, Paswan VK, Ibrahim NS, El-Ghoul AA, et al. Nutritional manipulation to combat heat stress in poultry-A comprehensive review. J Therm Bio. 2021;98:102915. https://doi.org/10.1016/j.jtherbio.2021.102915
14. Bhawa S, Morêki JC, Machete JB. Poultry Management Strategies to Alleviate Heat Stress in Hot Climates: A Review. J World's Poult Res. 2023;13(1):1-19. https://doi.org/10.36380/jwpr.2023.1
15. Nawaz AH, Amoah K, Leng QY, Zheng JH, Zhang WL, Zhang L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front Vet Sci. 2021;8:1-16. https://doi.org/10.3389/fvets.2021.699081
16. Bekele G. Review on the Effect of Heat Stress on Poultry Production and Productivities. Food Sci Nutr Technol. 2021;6(2):1-9.
https://doi.org/10.23880/fsnt-16000260
17. Kumar M, Ratwan P, Dahiya SP, Nehra AK. Climate change and heat stress: Impact on production, reproduction and growth performance of poultry and its mitigation using genetic strategies. J Therm Biol. 2021;97:102867. https://doi.org/10.1016/j.jtherbio.2021.102867
18. Irshad, Gurunathan K, Kumar S, Kumar A, Kumar A, MR V, et al. Factors Influencing Carcass Composition of Livestock: a Review. J Anim Prod Adv. 2012;3(5):177-86. https://doi.org/10.5455/japa.20130531093231
19. Pawar SS, Basavaraj S, Dhansing LV, Pandurang KN, Sahebrao KA, Vitthal NA, et al. Assessing and mitigating the impact of heat stress in poultry. Adv Anim Vet Sci. 2016;4(6):332-41. https://doi.org/10.14737/journal.aavs/2016/4.6.332.341
20. Nawab A, Ibtisham F, Li G, Kieser B, Wu J, Liu W, et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J Therm Biol. 2018;78:131-9. https://doi.org/10.1016/j.jtherbio.2018.08.010
21. Goel A. Heat stress management in poultry. J Anim Physiol Anim Nutr. 2021;105(6):1136-45. https://doi.org/10.1111/jpn.13496
22. Vandana GD, Sejian V, Lees AM, Pragna P, Silpa MV, Maloney SK. Heat stress and poultry production: impact and amelioration. Int J Biometeorol 2021;65:163-79. https://doi.org/10.1007/s00484-020-02023-7
23. Brugaletta G, Teyssier JR, Rochell SJ, Dridi S, Sirri F. A review of heat stress in chickens. Part I: Insights into physiology and gut health. Front physio. 2022;13:934381. https://doi.org/10.3389/fphys.2022.934381
24. Mangan M, Siwek M. Strategies to combat heat stress in poultry production-A review. J Ani Physio and Ani Nutri. 2024;108(3):576-95.
https://doi.org/10.1111/jpn.13916
25. Surai PF, Fisinin VI. Vitagenes in poultry production: Part 1. Technological and environmental stresses. World's Poult Sci J. 2016;72(4):721-34. https://doi.org/10.1017/S0043933916000714
26. Kumari KNR, Nath DN, Venkateswra S. Ameliorative measures to counter heat stress in poultry. World's Poult Sci J. 2018;74:117-30.
https://doi.org/10.1017/S0043933917001003
27. Yalcin SE, Settar PE, Ozkan S, Cahaner AV. Comparative evaluation of three commercial broiler stocks in hot versus temperate climates. Poult Sci. 1997;76(7):921-9. https://doi.org/10.1093/ps/76.7.921
28. Gonzalez-Esquerra R, Leeson S. Effects of acute versus chronic heat stress on broiler response to dietary protein. Poult Sci. 2005;84(10):1562-9. https://doi.org/10.1093/ps/84.10.1562
29. Rodrigues MM, Neto MG, Perri SHV, Sandre DG, Faria MJA, Oliveira PM, et al. Techniques to minimize the effects of acute heat stress or chronic in broilers. Rev Bras Cienc Avic / Brazilian J Poult Sci. 2019;21(3):1-6. https://doi.org/10.1590/1806-9061-2018-0962
30. Mutaf S, Seber Kahraman N, Firat MZ. Intermittent partial surface wetting and its effect on body-surface temperatures and egg production of white and brown domestic laying hens in Antalya (Turkey). Br Poult Sci. 2009;50(1):33-8. https://doi.org/10.1080/00071660802592399
31. Lian P, Braber S, Garssen J, Wichers HJ, Folkerts G, Fink-Gremmels J, et al. Beyond heat stress: Intestinal integrity disruption and mechanism-based intervention strategies. Nutrients. 2020;12(3):1-31. https://doi.org/10.3390/nu12030734
32. Souza LFA de, Espinha LP, Almeida EA de, Lunedo R, Furlan RL, Macari M. How heat stress (continuous or cyclical) interferes with nutrient digestibility, energy and nitrogen balances and performance in broilers. Livest Sci. 2016;192:39-43.
https://doi.org/10.1016/j.livsci.2016.08.014
33. Howlider and Rose. Temperature and the growth of broilers. Worlds Poult Sci J. 1987;43(3):228-37.
https://doi.org/10.1079/WPS19870015
34. Valancony H. Les moyens de lutte contre le coup de chaleur. Deuxièmes Journées Ia Rech Avic Tours. 1997;53(9):153-96. file:///C:/Users/user/Downloads/32BATJRA2.pdf
35. Van Kampen M. Water balance of colostomised and non-colostomised hens at different ambient temperatures. Br Poult Sci. 1981;22(1):17-23. https://doi.org/10.1080/00071688108447859
36. El Boushy AR, van Marle AL. The Effect of Climate on Poultry Physiology in Tropics and their Improvement. Worlds Poult Sci J. 1978;34(3):155-71. https://doi.org/10.1079/WPS19960036
37. Linsley JG, Burger RE. Respiratory and Cardiovascular Responses in the Hyperthermic Domestic Cock ,. Poult Sci. 1964;43(2):291-305.
https://doi.org/10.3382/ps.0430291
38. Bottje WG, Harrison PC. The effect of tap water, carbonated water, sodium bicarbonate, and calcium chloride on blood acid-base balance in cockerels subjected to heat stress. Poult Sci. 1985;64(1):107-13. https://doi.org/10.3382/ps.0640107
39. Teeter RG, Smith MO, Owens FN, Arp SC, Sangiah S, Breazile JE. Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chicks. Poult Sci. 1985;64(6):1060-4. https://doi.org/10.3382/ps.0641060
40. El Hadi H, Sykes AH. Thermal panting and respiratory alkalosis in the laying hen. Br Poult Sci. 1982;23(1):49-57.
https://doi.org/10.1080/00071688208447928
41. Borges SA, Fischer Da Silva A V., Majorka A, Hooge DM, Cummings KR. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult Sci. 2004;83(9):1551-8.
https://doi.org/10.1093/ps/83.9.1551
42. Marder J, Arad Z. Panting and acid-base regulation in heat stressed birds. Comp Biochem Physiol -- Part A Physiol. 1989;94(3):395-400. https://doi.org/10.1016/0300-9629(89)90112-6
43. Kennedy GM, Lichoti JK, Ommeh SC. Heat stress and poultry: adaptation to climate change, challenges and opportunities for genetic breeding in Kenya. J. Agri Sci Tech. 2022;21(1):49-61. https://doi.org/10.4314/jagst.v21i1.6
44. Juiputta J, Chankitisakul V, Boonkum W. Appropriate Genetic Approaches for Heat Tolerance and Maintaining Good Productivity in Tropical Poultry Production: A Review. Vet Sci. 2023;10(10). https://doi.org/10.3390/vetsci10100591
45. Fernandes E, Raymundo A, Martins LL, Lordelo M, de Almeida AM. The naked neck gene in the domestic chicken: a genetic strategy to mitigate the impact of heat stress in poultry production-a review. Animals. 2023;13(6):1007. https://doi.org/10.3390/ani13061007
46. Chomchuen K, Tuntiyasawasdikul V, Chankitisakul V, Boonkum W. Comparative Study of Phenotypes and Genetics Related to the Growth Performance of Crossbred Thai Indigenous (KKU1 vs. KKU2) Chickens under Hot and Humid Conditions. Vet Sci. 2022;9(6):1-12.
https://doi.org/10.3390/vetsci9060263
47. Melesse A. Performance and physiological responses of naked-neck chickens and their F 1 crosses with commercial layer breeds to long-term high ambient temperature. Glob Vet. 2011;6(3):272-80. file:///C:/Users/user/Downloads/13_Melesse2011TotalProtein.pdf
48. Tóth R, Tokodyn N, Bence L, Buda K, Barbara V, Barna J, et al. Effect of Post-Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken. Animals. 2021; 11(6): 1-13. https://doi.org/10.3390/ani11061575
49. Merat P. Potential usefulness of the Na (naked neck) gene in poultry production. World's Poult Sci J. 1986;42(2):124-42.
https://doi.org/10.1079/WPS19860010
50. Cahaner A, Deeb N, Gutman M. Effects of the plumage-reducing naked neck (Na) gene on the performance of fast-growing broilers at normal and high ambient temperatures. Poult Sci. 1993;72(5):767-75. https://doi.org/10.3382/ps.0720767
51. Wang Y, Saelao P, Chanthavixay K, Gallardo R, Bunn D, Lamont SJ, et al. Physiological responses to heat stress in two genetically distinct chicken inbred lines. Poult Sci. 2018;97(3):770-80. https://doi.org/10.3382/ps/pex363
52. Rajkumar U, Reddy BL, Rajaravindra KS, Niranjan M, Bhattacharya TK, Chatterjee RN, Panda AK, Reddy MR, Sharma RP. Effect of naked neck gene on immune competence, serum biochemical and carcass traits in chickens under a tropical climate. Asian-Austra J Ani Sci. 2010;23(7):867-72. https://doi.org/10.5713/ajas.2010.90548
53. Azhar M, Mahmud A, Usman M, Javed K, Ishaq HM, Mehmood S, Ahmad S, Hussain J, Ghayas A, Abbas M. Effect of breeder age on the progeny performance of three naked-neck chicken phenotypes. Bra J Poult Sci. 2019;21:eRBCA-2018.
https://doi.org/10.1590/1806-9061-2018-0729
54. Dong J, He C, Wang Z, Li Y, Li S, Tao L, et al. A novel deletion in KRT75L4 mediates the frizzle trait in a Chinese indigenous chicken. Genet Sel Evol. 2018;1-9. https://doi.org/10.1186/s12711-018-0441-7
55. Sharifi AR, Horst P, Simianer H. The effect of frizzle gene and dwarf gene on reproductive performance of broiler breeder dams under high and normal ambient temperatures. Poult Sci. 2010;89(11):2356-69. https://doi.org/10.3382/ps.2010-00921
56. Yunis R, Cahaner A. The Effects of the Naked Neck ( Na ) and Frizzle ( F ) Genes on Growth and Meat Yield of Broilers and Their Interactions with Ambient Temperatures and Potential Growth Rate. Poult Sci. 1999;78(10):1347-52. https://doi.org/10.1093/ps/78.10.1347
57. Zerjal T, Gourichon D, Rivet B, Bordas A. Performance comparison of laying hens segregating for the frizzle gene under thermoneutral and high ambient temperatures. Poult Sci. 2013; 92(6):1474-85. https://doi.org/10.3382/ps.2012-02840
58. Fathi MM, Galal A, Radwan LM, Abou-emera OK, Al-homidan IH. Using major genes to mitigate the deleterious effects of heat stress in poultry : an updated review. Poult Sci. 2022;101(11):102157. https://doi.org/10.1016/j.psj.2022.102157
59. Deeb N, Cahaner A. Genotype-by-Environment Interaction with Broiler Genotypes Differing in Growth Rate : 2 . The Effects of High Ambient Temperature on Dwarf Versus Normal Broilers. Poult Sci. 2001;80(5):541-8. https://doi.org/10.1093/ps/80.5.541
60. Ranjan A, Sinha R, Devi I, Rahim A, Tiwari S. Effect of heat stress on poultry production and their managemental approaches. Int J Microbio App Sci. 2019; 8(2):1548-1555. https://doi.org/10.20546/ijcmas.2019.802.181
61. Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci. 2023;10:1-12. https://doi.org/10.3389/fvets.2023.1255520
62. Oloyo A, Ojerinde A. Poultry Housing and Management.In: Kamboh A.A. Editors.Poult - An Advance Learning.London. IntechOpen .2020;1-17p. https://doi.org/10.5772/intechopen.83811
63. Saeed M, Abbas G, Alagawany M, Kamboh AA, Abd El-Hack ME, Khafaga AF, et al. Heat stress management in poultry farms: A comprehensive overview. J Therm Biol. 2019;84(July):414-25. https://doi.org/10.1016/j.jtherbio.2019.07.025
64. Alchalabi D. Poultry Housing Design [Internet]. Baghdad: ResearchGate; 2013 Nov [cited 2024 Aug 15]. Available from: https://www.researchgate.net/publication/266910168
65. Daghir NJ. Poultry production in hot climates. 2nd ed. Wallingford (UK): CABI; 2008. 387 p.
https://doi.org/10.1079/9781845932589.0000
66. Bhadauria P, Keshava P, Mamgai A, Murai Y. Management of heat stress in poultry production system. ICAR-Agiculural Technology Application Research Institute, Zone-1, Ludhiana-141004. 2017. file:///C:/Users/user/Downloads/ManagementofHeatStressinpoultry-Allpages.pdf
67. Oke OE, Uyanga VA, Iyasere OS, Oke FO, Majekodunmi BC, Logunleko MO, et al. Environmental stress and livestock productivity in hot-humid tropics : Alleviation and future perspectives. J Therm Biol. 2021;100:103077. https://doi.org/10.1016/j.jtherbio.2021.103077
68. Tierzucht L. Heat stress management. Germany, Lohmann. 2016.
Available from: https://lohmannbreeders.com/media/2021/03/LTZ_MG_management-systems_EN.pdf
69. EuLA. Practical guidelines for disinfection with lime [Internet]. Brussels, Belgium: European Lime Association; 2009. Available from: http://www.uspoultry.org/animal_husbandry/files/2009 02 11 Influenza_UK_web.pdf
70. Moreki JC, Magapatona S, Manyeula F. Effect of stocking density on performance of broiler chickens. INT'L J. of Agric. and Rural dev. 2020;23(2):5367-72. http://researchhub.buan.ac.bw:80/handle/123456789/40
71. Kang HK, Park SB, Jeon JJ, Kim HS, Kim SH, Hong E, et al. Effect of stocking density on laying performance, egg quality and blood parameters of hy-line brown laying hens in an aviary system. Eur Poult Sci. 2018;82:1-13. https://doi.org/10.1399/eps.2018.245
72. Gholami M, Chamani M, Seidavi A, Sadeghi AA, Aminafschar M. Effects of stocking density and climate region on performance, immunity, carcass characteristics, blood constitutes, and economical parameters of broiler chickens. Rev Bras Zootec. 2020;49(2016):1-16. https://doi.org/10.37496/rbz4920190049
73. Nilsson J-Å, Molokwu MN, Olsson O. Body Temperature Regulation in Hot Environments. PLoS One. 2016; 11 (8):119-45.
https://doi.org/10.1371/journal.pone.0161481
74. Oni AI, Abiona JA, Fafiolu AO, Oke OE. Early-age thermal manipulation and supplemental antioxidants on physiological, biochemical and productive performance of broiler chickens in hot-tropical environments. Stress. 2024;27(1).
https://doi.org/10.1080/10253890.2024.2319803
75. Yahav S, Rath RS, Shinder D. The effect of thermal manipulations during embryogenesis of broiler chicks (Gallus domesticus) on hatchability, body weight and thermoregulation after hatch. J Therm Biol. 2004;29(4-5):245-50.
https://doi.org/10.1016/j.jtherbio.2004.03.002
76. Piestun Y, Shinder D, Ruzal M, Halevy O, Brake J, Yahav S. Thermal manipulations during broiler embryogenesis: Effect on the acquisition of thermotolerance. Poult Sci. 2008;87(8):1516-25. https://doi.org/10.3382/ps.2008-00030
77. Yahav S, McMurtry JP. Thermotolerance acquisition in broiler chickens by temperature conditioning early in life - The effect of timing and ambient temperature. Poult Sci. 2001;80(12):1662-6. https://doi.org/10.1093/ps/80.12.1662
78. Rath P, Behura N, Sahoo S, Panda P, Mandal K, Panigrahi P. Amelioration of Heat Stress for Poultry Welfare: A Strategic Approach. Int J Livest Res. 2015;5(3):1. https://doi.org/10.5455/ijlr.20150330093915
79. Yalçin S, Çabuk M, Bruggeman V, Babacanoǧlu E, Buyse J, Decuypere E, et al. Acclimation to heat during incubation: 3. Body weight, cloacal temperatures, and blood acid-base balance in broilers exposed to daily high temperatures. Poult Sci. 2008;87(12):2671-7.
https://doi.org/10.3382/ps.2008-00164
80. Bell DD, Weaver WD. Commercial chicken meat and egg production. 5th ed. Boston: Springer; 2002. 1365 p.
https://doi.org/10.1007/978-1-4615-0811-3
81. Abreu PG de, Abreu VMN. Thermal Comfort for Poultry - Technical Release. Embrapa Swine and Poultry. 2004; 365:5. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/85833/1/DCOT-365.pdf
82. Singh V, Chakrabarti A, Godara RS, Das A, Sahoo L, Devi HL et al. Heat stress in poultry production and its management under changing climatic scenario. Ind Farming Dig. 2022;1(1):1-17. https://www.researchgate.net/publication/362312736_Heat_Stress_in_Poultry_Production_and_its_Management_under_Changing_Climatic_Scenario#fullTextFileContent
83. Garcês APJT, Afonso SMS, Chilundo A, Jairoce CTS. Evaluation of different litter materials for broiler production in a hot and humid environment: 2. Productive performance and carcass characteristics. Trop Anim Health Prod. 2017;49(2):369-374.
https://doi.org/10.1007/s11250-016-1202-7
84. Manafi M. Poultry litter selection, management and utilization in the tropics. 1st ed. Zagreb: Intechopen; 2017. 191 p.
85. Olanrewaju HA, Purswell JL, Collier SD, Branton SL. Effect of light intensity adjusted for species-specific spectral sensitivity on blood physiological variables of male broiler chickens. Poult Sci. 2019;98(3):1090-5. https://doi.org/10.3382/ps/pey487
86. Mendes AS, Paixão SJ, Restelatto R, Morello GM, de Moura DJ, Possenti JC. Performance and preference of broiler chickens exposed to different lighting sources. J Appl Poult Res. 2013;22(1):62-70. https://doi.org/10.3382/japr.2012-00580
87. Abbas AO, El-Dein AA, Desoky AA, Galal MA. The effects of photoperiod programs on broiler chicken performance and immune response. Int J Poult Sci. 2008;7(7):665-671. https://doi.org/10.3923/ijps.2008.665.671
88. Lin H, Jiao HC, Buyse J, Decuypere E. Strategies for preventing heat stress in poultry. Worlds Poult Sci J. 2006;62(1) :71-86 .
https://doi.org/10.1079/WPS200585
89. De Oliveira RG, Lara LJC. Lighting programmes and its implications for broiler chickens. Worlds Poult Sci J. 2016;72(4):735-41.
https://doi.org/10.1017/S0043933916000702
90. Petek M, Sönmez G, Yildiz H, Baspinar H. Effects of different management factors on broiler performance and incidence of tibial dyschondroplasia. Br Poult Sci. 2005;46(1):16-21. https://doi.org/10.1080/00071660400023821
91. Ryu ST, Park BS, Bang HT, Kang HK, Hwangbo J. Effects of anti-heat diet and inverse lighting on growth performance, immune organ, microorganism and short chain fatty acids of broiler chickens under heat stress. J Environ Biol. 2016;37(2):185-92. https://pubmed.ncbi.nlm.nih.gov/27097436/
92. Abdo SE, El-Kassas S, El-Nahas AF, Mahmoud S. Modulatory effect of monochromatic blue light on heat stress response in commercial broilers. Oxi Med Cell Long. 2017; 2017(1):1351945. https://doi.org/10.1155/2017/1351945
93. Nawab A, Ibtisham F, Li G, Kieser B, Wu J, Liu W, et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J Therm Biol. 2018;78:131-9. https://doi.org/10.1016/j.jtherbio.2018.08.010
94. Yalcin S, Özkan S, Türkmut L, Siegel PB. Responses to heat stress in commercial and local broiler stocks. 2. Developmental stability of bilateral traits. Br Poult Sci. 2001;42(2):153-60. https://doi.org/10.1080/00071660120048384
95. Mohamed ASA, Lozovskiy AR, Ali AMA. Strategies to combat the deleterious impacts of heat stress through feed restrictions and dietary supplementation (vitamins, minerals) in broilers. J Indones Trop Anim Agric. 2019;44(2):155-66. https://doi.org/10.14710/jitaa.44.2.155-166
96. Wiernusz CJ, Teeter RG. Acclimation effects on fed and fasted broiler thermobalance during thermoneutral and high ambient temperature exposure. Br Poult Sci. 1996;37(3):677-87. https://doi.org/10.1080/00071669608417897
97. Farghly MFA, Mahrose KM, Galal AE, Ali RM, Ahmad EAM, Rehman ZU, et al. Implementation of different feed withdrawal times and water temperatures in managing turkeys during heat stress. Poult Sci. 2018;97(9):3076-84. https://doi.org/10.3382/ps/pey173
98. De Basilio V, Vilariño M, Yahav S, Picard M. Early age thermal conditioning and a dual feeding program for male broilers challenged by heat stress. Poult Sci. 2001;80(1):29-36. https://doi.org/10.1093/ps/80.1.29
99. Lozano C, De Basilio V, Oliveros I, Alvarez R, Colina I, Bastianelli D, et al. Is sequential feeding a suitable technique to compensate for the negative effects of a tropical climate in finishing broilers?. Ani Res. 2006;55(1):71-6. https://doi.org/10.1051/animres:2005047
100. Geraert PA. Métabolisme énergétique du poulet de chair en climat chaud. Productions Animales. 1991;4(3):257-267.
https://doi.org/10.20870/productions-animales.1991.4.3.4340
101. Iyasere OS, Bateson M, Beard AP, Guy JH. Provision of Additional Cup Drinkers Mildly Alleviated Moderate Heat Stress Conditions in Broiler Chickens. J Appl Anim Welf Sci. 2021;24(2):188-99. https://doi.org/10.1080/10888705.2020.1846534
102. Syafwan S, Kwakkel RP, Verstegen MWA. Heat stress and feeding strategies in meat-type chickens. Worlds Poult Sci J. 2011;67(4):653-674. https://doi.org/10.1017/S0043933911000742
103. Ashraf Waiz H, Gautam L, Nagda RK, Ahmad Bhat G. Effect of wet feeding on feed conversion efficiency in laying hens during summer season. Iran J Appl Anim Sci. 2016;6(2):383-387. https://www.researchgate.net/publication/316587737_Effect_of_wet_feeding_on_feed_conversion_efficiency_in_laying_hens_during_summer_season#fullTextFileContent
104. Waiz HA, Gautam LK, Nisar NA, Rathore NS, Nagda RK. Effect of wet feeding on egg quality parameters in laying hens. Vet Pract. 2016;17(1):142-144. https://www.researchgate.net/publication/307597503_Effect_of_wet_feeding_on_egg_quality_parameters_in_laying_hens#fullTextFileContent
105. Awojobi HA, Oluwole BO, Adekunmisi AA, Buraimo RA. Performance of finisher broilers fed wet mash with or without drinking water during wet season in the tropics. Int J Poult Sci. 2009;8(6):592-4. https://doi.org/10.3923/ijps.2009.592.594
106. Bruno LDG, Maiorka A, Macari M, Furlan RL, Givisiez PEN. Water intake behavior of broiler chickens exposed to heat stress and drinking from bell or and nipple drinkers. Rev Bras Cienc Avic / Brazilian J Poult Sci. 2011;13(2):147-152.
https://doi.org/10.1590/S1516-635X2011000200009
107. Mushtaq MMH, Pasha TN, Mushtaq T, Parvin R. Electrolytes, dietary electrolyte balance and salts in broilers: An updated review on growth performance, water intake and litter quality. Worlds Poult Sci J. 2013;69(4):789-802. https://doi.org/10.1017/S0043933913000810
108. Chaiyabutr N. Physiological reactions of poultry to heat stress and methods to reduce its effects on poultry production. The Thai J Vet Medi. 2004;34(2):17-30. https://doi.org/10.56808/2985-1130.1966
109. Park S-O, And B-SP, Hwangbo J. Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress. J. Environ. Biol. 2015;36:865-73. https://www.researchgate.net/publication/281780867_Effect_of_cold_water_and_inverse_lighting_on_growth_performance_of_broiler_chickens_under_extreme_heat_stress
110. Valbuena D. Feed and water management strategies to mitigate heat stress in layers [Internet]. Germany: EW Nutrition; 2023 Dec 6 [cited 2024 Aug 15]. Available from: https://ew-nutrition.com/feed-water-management-strategies-heat-stress-layers/
111. Quilumba C, Quijia E, Gernat A, Murillo G, Grimes J. Evaluation of different water flow rates of nipple drinkers on broiler productivity. J Appl Poult Res. 2015;24(1):58-65. https://doi.org/10.3382/japr/pfv005
112. Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. 2012;6(5):707-28. https://doi.org/10.1017/S1751731111002448
113. Ghazalah AA, Abd-Elsamee MO, Ali AM. Influence of dietary energy and poultry fat on the response of broiler chicks to heat therm. Int J Poult Sci. 2008;7(4):355-359. https://doi.org/10.3923/ijps.2008.355.359
114. Zulkifli I, Ginsos J, And PKL, Gilbert J. Growth performance and Newcastle disease antibody titres of broiler chickens fed palm-based diets and their response to heat stress during fasting. 2003;67(3):125-30.
115. Balnave D, Brake J. Nutrition and management of heat-stressed pullets and laying hens. World's Poult Sci J. 2005;61(3):399-406.
https://doi.org/10.1079/WPS200565
116. Attia YA, Hassan SS. Broiler tolerance to heat stress at various dietary protein/energy levels. European Poultry Science/Archiv für Geflügelkunde. 2017;81(171). https://doi.org/10.1399/eps.2017.171
117. Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, L. R. M. Sá , et al. Heat stress impairs performance parameters , induces intestinal injury , and decreases macrophage activity in broiler chickens. Poult Sci. 2010;89(May):1905-1914.
https://doi.org/10.3382/ps.2010-00812
118. Mendes AA, Watkins SE, England JA, Saleh EA, Waldroup AL, Waldroup PW. Influence of dietary lysine levels and arginine: lysine ratios on performance of broilers exposed to heat or cold stress during the period of three to six weeks of age. Poult Sci. 1997;76(3):472-81. https://doi.org/10.1093/ps/76.3.472
119. Chen JA, Hayat JA, Huang BA, Balnave DA, Brake JB. Responses of broilers at moderate or high temperatures to dietary arginine : lysine ratio and source of supplemental methionine activity. Austra J Agri Res. 2003;54(2):177-81. https://doi.org/10.1071/AR02117
120. Borges SA, Da Silva AF, Maiorka A. Acid-base balance in broilers. World's Poultry Science Journal. 2007;63(1):73-81.
https://doi.org/10.1017/S0043933907001286
121. Naseem MT, Naseem S, Younus M, Iqbal Ch. Z, Ghafoor A, Aslam A, et al. Effect of potassium chloride and sodium bicarbonate supplementation on thermotolerance of broilers exposed to heat stress. Int J Poult Sci. 2005;4(11):891-5. https://doi.org/10.3923/ijps.2005.891.895
122. Senkoylu N, Akyurek H, Agma HES. Assessment the Impacts of Dietary Electrolyte Balance Levels on Laying Performance of Commercial White Layers. Pakistan J Nutr. 2005;4(6):423-7. https://doi.org/10.3923/pjn.2005.423.427
123. Khan RU, Naz S, Nikousefat Z, Selvaggi M, Laudadio V, Tufarelli V. Effect of ascorbic acid in heat-stressed poultry. World's Poult Sci J. 2012;68(3):477-490. https://doi.org/10.1017/S004393391200058X
124. Attia YA, Al-harthi MA, El-shafey AS, Rehab YA, Kim WK. Enhancing tolerance of broiler chickens to heat stress by supplementation with vitamin E, vitamin C and/or probiotics. 2017;17(4):1155-69. https://doi.org/10.1515/aoas-2017-0012
125. Dalólio FS, Albino LFT, Lima HJD, da Silva JN, Moreira J. Heat stress and vitamin E in diets for broilers as a mitigating measure. Acta Sci - Anim Sci. 2015;37(4):419-27. https://doi.org/10.4025/actascianimsci.v37i4.27456
126. Khan RU, Naz S, Nikousefat Z, Tufarelli V, Javdani M, Rana N, et al. Effect of vitamin e in heat-stressed poultry. Worlds Poult Sci J. 2011;67(3):469-478. https://doi.org/10.1017/S0043933911000511
127. Bollengier-Lee S. Optimal dietary concentration of vitamin E for alleviating the effect of heat stress on egg production in laying hens. Brit Poult Sci. 1999;40(1):102-107. https://doi.org/10.1080/00071669987917
128. Sahin K, Kucuk O. Effects of vitamin E and selenium on performance, digestibility of nutrients, and carcass characteristics of Japanese quails reared under heat stress (34˚C). J Ani Physio Ani Nutri. 2001; Dec 20;85(11‐12):342-8.
https://doi.org/10.1046/j.1439-0396.2001.00340.x
129. Cao C, Chowdhury VS, Cline MA, Gilbert ER. The microbiota-gut-brain axis during heat stress in chickens: a review. Front Physio. 2021;12:752265. https://doi.org/10.3389/fphys.2021.752265
130. Wang WC, Yan FF, Hu JY, Amen OA, Cheng HW. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J Anim Sci. 2018;96(5):1654-1666. https://doi.org/10.1093/jas/sky092
131. Deng W, Dong XF, Tong JM, Zhang Q. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult Sci. 2012;91(3):575-82.
https://doi.org/10.3382/ps.2010-01293
132. Hasan S, Hossain MM, Alam J, Bhuiyan MER. Beneficial effects of probiotic on growth perfirmance and hemato-biochemical parameters in broilers during heat stress. Int J Innov Appl Stud. 2015;10(1):244-249. http://www.ijias.issr-journals.org/
133. Sayed Y, Hassan M, Salem HM, Al-Amry K, Eid GE. Prophylactic influences of prebiotics on gut microbiome and immune response of heat-stressed broiler chickens. Sci Rep. 2023;13(1):1-17. https://doi.org/10.1038/s41598-023-40997-7
134. Teng PY, Kim WK. Review: Roles of prebiotics in intestinal ecosystem of broilers. Front Vet Sci. 2018;5:1-18.
https://doi.org/10.3389/fvets.2018.00245
135. Sugiharto S. Role of nutraceuticals in gut health and growth performance of poultry. J Saudi Soc Agric Sci. 2016;15(2):99-111.
https://doi.org/10.1016/j.jssas.2014.06.001
136. Awad W, Ghareeb K, Böhm J. Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. Int J Mol Sci. 2008;9(11):2205-2216. https://doi.org/10.3390/ijms9112205
137. Sohail MU, Ijaz A, Yousaf MS, Ashraf K, Zaneb H, Aleem M, et al. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult Sci. 2010;89(9):1934-8. https://doi.org/10.3382/ps.2010-00751
138. Ashraf S, Zaneb H, Yousaf MS, Ijaz A, Sohail MU, Muti S, et al. Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress. J Anim Physiol Anim Nutr. 2013;97:68-73.
https://doi.org/10.1111/jpn.12041
139. Awad EA, Zulkifli I, Ramiah SK, Khalil ES, Abdallh ME. Prebiotics supplementation: an effective approach to mitigate the detrimental effects of heat stress in broiler chickens. Worlds Poult Sci J. 2021;77(1):1-17. https://doi.org/10.1080/00439339.2020.1759222