Responses of Poultry to Heat Stress and Mitigation Strategies During Summer in Tropical Countries: A Review

Main Article Content

RAHUL AVI

Abstract

The poultry industry faces increasing challenges from heat stress caused by global warming, particularly in tropical regions. Heat stress, caused by rising environmental temperatures, undermines the health and productivity of poultry, resulting in significant economic losses. This review comprehensively addresses the physiological and behavioural responses of poultry to heat stress and explores the key mitigation strategies, categorized under genetics, management and feeding. Genetic approaches, like utilizing specific genes in breeding, show promise but require wider adoption. Management practices such as housing design, including orientation, insulation and ventilation, controlled lighting and thermal manipulation are critical to maintaining poultry in their thermoneutral zone. Furthermore, feeding strategies like feed restriction, dual feeding and nutritional manipulation have shown promise in reducing heat stress effects. In addition to feeding strategies, water management is also crucial for mitigating heat stress, especially in tropical areas. Ensuring sufficient water space, maintaining operating waterers, and keeping water cool are essential to encourage adequate drinking. Despite progress, further investigation is required to explore the synergistic effects of combined strategies to improve the resilience of poultry. This review highlights the urgent need for comprehensive approaches to mitigate heat stress in poultry to ensure sustainable productivity under the challenges of global warming        

Downloads

Download data is not yet available.

Article Details

How to Cite
Responses of Poultry to Heat Stress and Mitigation Strategies During Summer in Tropical Countries: A Review. (2024). The Iraqi Journal of Veterinary Medicine, 48(2), 55-65. https://doi.org/10.30539/1y9y3h89
Section
Reviews

How to Cite

Responses of Poultry to Heat Stress and Mitigation Strategies During Summer in Tropical Countries: A Review. (2024). The Iraqi Journal of Veterinary Medicine, 48(2), 55-65. https://doi.org/10.30539/1y9y3h89

References

‎1. ‎ Barrett NW, Rowland K, Schmidt CJ, Lamont SJ, Rothschild MF, Ashwell CM, ‎et al. Effects of acute and chronic heat stress on the performance, egg quality, body ‎temperature, and blood gas parameters of laying hens. Poult Sci. ‎‎2019;98(12):6684-92.

https://doi.org/10.3382/ps/pez541

‎2. ‎ Kennedy GM, Lichoti JK, Ommeh SC. Heat stress and poultry: adaptation to ‎climate change, challenges and opportunities for genetic breeding in Kenya. J Agri ‎Sci and Tech. 2022;21(1):49-61. https://doi.org/10.4314/jagst.v21i1.6

‎3. ‎ Nardone A, Ronchi B, Lacetera N, Ranieri MS, Bernabucci U. Effects of climate ‎changes on animal production and sustainability of livestock systems. Lives Sci. ‎‎2010;130(1-3):57-69. https://doi.org/10.1016/j.livsci.2010.02.011

‎4. ‎ Teyssier JR, Brugaletta G, Sirri F, Dridi S, Rochell SJ. A review of heat stress in ‎chickens. Part II: Insights into protein and energy utilization and feeding. Front ‎Physiol. 2022;13:1-17. https://doi.org/10.3389/fphys.2022.943612

‎5. ‎ Pius LO, Strausz P, Kusza S. Overview of poultry management as a key factor for ‎solving food and nutritional security with a special focus on chicken breeding in ‎east african countries. Biology. 2021;10(8). ‎https://doi.org/10.3390/biology10080810

‎6. ‎ Papanikolaou Y, Fulgoni VL. Eggs Are Cost-Efficient in Delivering Several ‎Shortfall Nutrients in the American Diet: A Cost-Analysis in Children and Adults. ‎Nutrients. 2020; 12(8):1-13. https://doi.org/10.3390/nu12082406

‎7. ‎ Pal M, Molnár J. The Role of Eggs as an Important Source of Nutrition in Human ‎Health. Int J Food Sci Agric. 2021;5(1):180-2.

https://doi.org/10.26855/ijfsa.2021.03.023

‎8. ‎ Melesse A. Significance of scavenging chicken production in the rural community ‎of Africa for enhanced food security. Worlds Poult Sci J. 2014;70(3):593-606. ‎https://doi.org/10.1017/S0043933914000646

‎9. ‎ Connolly G, Clark CM, Campbell RE, Byers AW, Reed JB, Campbell WW. ‎Poultry Consumption and Human Health: How Much Is Really Known? A ‎Systematically Searched Scoping Review and Research Perspective. Adv Nutr. ‎‎2022;13(6):2115-24. https://doi.org/10.1093/advances/nmac074

‎10. ‎ Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and ‎performances, and potential mitigation strategies. Animals. 2020;10(8):1266. ‎https://doi.org/10.3390/ani10081266

‎11. ‎ Goo D, Kim JH, Park GH, Reyes JBD, Kil DY. Effect of heat stress and stocking ‎density on growth performance, breast meat quality, and intestinal barrier function ‎in broiler chickens. Animals. 2019;9(3). https://doi.org/10.3390/ani9030107

‎12. ‎ Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals. ‎‎2013;3(2):356-69. https://doi.org/10.3390/ani3020356

‎13. ‎ Abdel-Moneim AM, Shehata AM, Khidr RE, Paswan VK, Ibrahim NS, El-Ghoul ‎AA, et al. Nutritional manipulation to combat heat stress in poultry-A ‎comprehensive review. J Therm Bio. 2021;98:102915. ‎https://doi.org/10.1016/j.jtherbio.2021.102915

‎14. ‎ Bhawa S, Morêki JC, Machete JB. Poultry Management Strategies to Alleviate ‎Heat Stress in Hot Climates: A Review. J World's Poult Res. 2023;13(1):1-19. ‎https://doi.org/10.36380/jwpr.2023.1

‎15. ‎ Nawaz AH, Amoah K, Leng QY, Zheng JH, Zhang WL, Zhang L. Poultry ‎Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on ‎Meat Production and Quality Including Strategies to Improve Broiler Production in ‎a Warming World. Front Vet Sci. 2021;8:1-16. ‎https://doi.org/10.3389/fvets.2021.699081

‎16. ‎ Bekele G. Review on the Effect of Heat Stress on Poultry Production and ‎Productivities. Food Sci Nutr Technol. 2021;6(2):1-9. ‎

https://doi.org/10.23880/fsnt-16000260

‎17. ‎ Kumar M, Ratwan P, Dahiya SP, Nehra AK. Climate change and heat stress: ‎Impact on production, reproduction and growth performance of poultry and its ‎mitigation using genetic strategies. J Therm Biol. 2021;97:102867. ‎https://doi.org/10.1016/j.jtherbio.2021.102867

‎18. ‎ Irshad, Gurunathan K, Kumar S, Kumar A, Kumar A, MR V, et al. Factors ‎Influencing Carcass Composition of Livestock: a Review. J Anim Prod Adv. ‎‎2012;3(5):177-86. https://doi.org/10.5455/japa.20130531093231

‎19. ‎ Pawar SS, Basavaraj S, Dhansing LV, Pandurang KN, Sahebrao KA, Vitthal NA, ‎et al. Assessing and mitigating the impact of heat stress in poultry. Adv Anim Vet ‎Sci. 2016;4(6):332-41. ‎https://doi.org/10.14737/journal.aavs/2016/4.6.332.341

‎20. ‎ Nawab A, Ibtisham F, Li G, Kieser B, Wu J, Liu W, et al. Heat stress in poultry ‎production: Mitigation strategies to overcome the future challenges facing the ‎global poultry industry. J Therm Biol. 2018;78:131-9. ‎https://doi.org/10.1016/j.jtherbio.2018.08.010

‎21. ‎ Goel A. Heat stress management in poultry. J Anim Physiol Anim Nutr. ‎‎2021;105(6):1136-45. https://doi.org/10.1111/jpn.13496

‎22. ‎ Vandana GD, Sejian V, Lees AM, Pragna P, Silpa MV, Maloney SK. Heat stress ‎and poultry production: impact and amelioration. Int J Biometeorol 2021;65:163-‎‎79. ‎https://doi.org/10.1007/s00484-020-02023-7

‎23. ‎ Brugaletta G, Teyssier JR, Rochell SJ, Dridi S, Sirri F. A review of heat stress in ‎chickens. Part I: Insights into physiology and gut health. Front physio. ‎‎2022;13:934381. https://doi.org/10.3389/fphys.2022.934381

‎24. ‎ Mangan M, Siwek M. Strategies to combat heat stress in poultry production-A ‎review. J Ani Physio and Ani Nutri. 2024;108(3):576-95. ‎

https://doi.org/10.1111/jpn.13916

‎25. ‎ Surai PF, Fisinin VI. Vitagenes in poultry production: Part 1. Technological and ‎environmental stresses. World's Poult Sci J. 2016;72(4):721-34. ‎https://doi.org/10.1017/S0043933916000714

‎26. ‎ Kumari KNR, Nath DN, Venkateswra S. Ameliorative measures to counter heat ‎stress in poultry. World's Poult Sci J. 2018;74:117-30. ‎

https://doi.org/10.1017/S0043933917001003

‎27. ‎ Yalcin SE, Settar PE, Ozkan S, Cahaner AV. Comparative evaluation of three ‎commercial broiler stocks in hot versus temperate climates. Poult Sci. ‎‎1997;76(7):921-9. https://doi.org/10.1093/ps/76.7.921

‎28. ‎ Gonzalez-Esquerra R, Leeson S. Effects of acute versus chronic heat stress on ‎broiler response to dietary protein. Poult Sci. 2005;84(10):1562-9. ‎https://doi.org/10.1093/ps/84.10.1562

‎29. ‎ Rodrigues MM, Neto MG, Perri SHV, Sandre DG, Faria MJA, Oliveira PM, et al. ‎Techniques to minimize the effects of acute heat stress or chronic in broilers. Rev ‎Bras Cienc Avic / Brazilian J Poult Sci. 2019;21(3):1-6. ‎https://doi.org/10.1590/1806-9061-2018-0962

‎30. ‎ Mutaf S, Seber Kahraman N, Firat MZ. Intermittent partial surface wetting and its ‎effect on body-surface temperatures and egg production of white and brown ‎domestic laying hens in Antalya (Turkey). Br Poult Sci. 2009;50(1):33-8. ‎https://doi.org/10.1080/00071660802592399

‎31. ‎ Lian P, Braber S, Garssen J, Wichers HJ, Folkerts G, Fink-Gremmels J, et al. ‎Beyond heat stress: Intestinal integrity disruption and mechanism-based ‎intervention strategies. Nutrients. 2020;12(3):1-31. ‎https://doi.org/10.3390/nu12030734

‎32. ‎ Souza LFA de, Espinha LP, Almeida EA de, Lunedo R, Furlan RL, Macari M. ‎How heat stress (continuous or cyclical) interferes with nutrient digestibility, ‎energy and nitrogen balances and performance in broilers. Livest Sci. ‎‎2016;192:39-43.

https://doi.org/10.1016/j.livsci.2016.08.014

‎33. ‎ Howlider and Rose. Temperature and the growth of broilers. Worlds Poult Sci J. ‎‎1987;43(3):228-37.

https://doi.org/10.1079/WPS19870015

‎34. ‎ Valancony H. Les moyens de lutte contre le coup de chaleur. Deuxièmes Journées ‎Ia Rech Avic Tours. 1997;53(9):153-96. ‎file:///C:/Users/user/Downloads/32BATJRA2.pdf

‎35. ‎ Van Kampen M. Water balance of colostomised and non-colostomised hens at ‎different ambient temperatures. Br Poult Sci. 1981;22(1):17-23. ‎https://doi.org/10.1080/00071688108447859

‎36. ‎ El Boushy AR, van Marle AL. The Effect of Climate on Poultry Physiology in ‎Tropics and their Improvement. Worlds Poult Sci J. 1978;34(3):155-71. ‎https://doi.org/10.1079/WPS19960036

‎37. ‎ Linsley JG, Burger RE. Respiratory and Cardiovascular Responses in the ‎Hyperthermic Domestic Cock ,. Poult Sci. 1964;43(2):291-305. ‎

https://doi.org/10.3382/ps.0430291

‎38. ‎ Bottje WG, Harrison PC. The effect of tap water, carbonated water, sodium ‎bicarbonate, and calcium chloride on blood acid-base balance in cockerels ‎subjected to heat stress. Poult Sci. 1985;64(1):107-13. ‎https://doi.org/10.3382/ps.0640107

‎39. ‎ Teeter RG, Smith MO, Owens FN, Arp SC, Sangiah S, Breazile JE. Chronic heat ‎stress and respiratory alkalosis: occurrence and treatment in broiler chicks. Poult ‎Sci. 1985;64(6):1060-4. https://doi.org/10.3382/ps.0641060

‎40. ‎ El Hadi H, Sykes AH. Thermal panting and respiratory alkalosis in the laying hen. ‎Br Poult Sci. 1982;23(1):49-57. ‎

https://doi.org/10.1080/00071688208447928

‎41. ‎ Borges SA, Fischer Da Silva A V., Majorka A, Hooge DM, Cummings KR. ‎Physiological responses of broiler chickens to heat stress and dietary electrolyte ‎balance (sodium plus potassium minus chloride, milliequivalents per kilogram). ‎Poult Sci. 2004;83(9):1551-8.

https://doi.org/10.1093/ps/83.9.1551

‎42. ‎ Marder J, Arad Z. Panting and acid-base regulation in heat stressed birds. Comp ‎Biochem Physiol -- Part A Physiol. 1989;94(3):395-400. ‎https://doi.org/10.1016/0300-9629(89)90112-6

‎43. ‎ Kennedy GM, Lichoti JK, Ommeh SC. Heat stress and poultry: adaptation to ‎climate change, challenges and opportunities for genetic breeding in Kenya. J. Agri ‎Sci Tech. 2022;21(1):49-61. https://doi.org/10.4314/jagst.v21i1.6

‎44. ‎ Juiputta J, Chankitisakul V, Boonkum W. Appropriate Genetic Approaches for ‎Heat Tolerance and Maintaining Good Productivity in Tropical Poultry ‎Production: A Review. Vet Sci. 2023;10(10). ‎‎https://doi.org/10.3390/vetsci10100591

‎45. ‎ Fernandes E, Raymundo A, Martins LL, Lordelo M, de Almeida AM. The naked ‎neck gene in the domestic chicken: a genetic strategy to mitigate the impact of heat ‎stress in poultry production-a review. Animals. 2023;13(6):1007. ‎https://doi.org/10.3390/ani13061007

‎46. ‎ Chomchuen K, Tuntiyasawasdikul V, Chankitisakul V, Boonkum W. ‎Comparative Study of Phenotypes and Genetics Related to the Growth ‎Performance of Crossbred Thai Indigenous (KKU1 vs. KKU2) Chickens under ‎Hot and Humid Conditions. Vet Sci. 2022;9(6):1-12. ‎

https://doi.org/10.3390/vetsci9060263

‎47. ‎ Melesse A. Performance and physiological responses of naked-neck chickens and ‎their F 1 crosses with commercial layer breeds to long-term high ambient ‎temperature. Glob Vet. 2011;6(3):272-80. ‎file:///C:/Users/user/Downloads/13_Melesse2011TotalProtein.pdf ‎

‎48. ‎ Tóth R, Tokodyn N, Bence L, Buda K, Barbara V, Barna J, et al. Effect of Post-‎Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken. ‎Animals. 2021; 11(6): 1-13. https://doi.org/10.3390/ani11061575

‎49. ‎ Merat P. Potential usefulness of the Na (naked neck) gene in poultry production. ‎World's Poult Sci J. 1986;42(2):124-42.

https://doi.org/10.1079/WPS19860010

‎50. ‎ Cahaner A, Deeb N, Gutman M. Effects of the plumage-reducing naked neck (Na) ‎gene on the performance of fast-growing broilers at normal and high ambient ‎temperatures. Poult Sci. 1993;72(5):767-75. https://doi.org/10.3382/ps.0720767

‎51. ‎ Wang Y, Saelao P, Chanthavixay K, Gallardo R, Bunn D, Lamont SJ, et al. ‎Physiological responses to heat stress in two genetically distinct chicken inbred ‎lines. Poult Sci. 2018;97(3):770-80. https://doi.org/10.3382/ps/pex363

‎52. ‎ Rajkumar U, Reddy BL, Rajaravindra KS, Niranjan M, Bhattacharya TK, ‎Chatterjee RN, Panda AK, Reddy MR, Sharma RP. Effect of naked neck gene on ‎immune competence, serum biochemical and carcass traits in chickens under a ‎tropical climate. Asian-Austra J Ani Sci. 2010;23(7):867-72. ‎https://doi.org/10.5713/ajas.2010.90548

‎53. ‎ Azhar M, Mahmud A, Usman M, Javed K, Ishaq HM, Mehmood S, Ahmad S, ‎Hussain J, Ghayas A, Abbas M. Effect of breeder age on the progeny performance ‎of three naked-neck chicken phenotypes. Bra J Poult Sci. 2019;21:eRBCA-2018. ‎

https://doi.org/10.1590/1806-9061-2018-0729

‎54. ‎ Dong J, He C, Wang Z, Li Y, Li S, Tao L, et al. A novel deletion in KRT75L4 ‎mediates the frizzle trait in a Chinese indigenous chicken. Genet Sel Evol. 2018;1-‎‎9. https://doi.org/10.1186/s12711-018-0441-7

‎55. ‎ Sharifi AR, Horst P, Simianer H. The effect of frizzle gene and dwarf gene on ‎reproductive performance of broiler breeder dams under high and normal ambient ‎temperatures. Poult Sci. 2010;89(11):2356-69. https://doi.org/10.3382/ps.2010-00921

‎56. ‎ Yunis R, Cahaner A. The Effects of the Naked Neck ( Na ) and Frizzle ( F ) ‎Genes on Growth and Meat Yield of Broilers and Their Interactions with Ambient ‎Temperatures and Potential Growth Rate. Poult Sci. 1999;78(10):1347-52. https://doi.org/10.1093/ps/78.10.1347

‎57. ‎ Zerjal T, Gourichon D, Rivet B, Bordas A. Performance comparison of laying ‎hens segregating for the frizzle gene under thermoneutral and high ambient ‎temperatures. Poult Sci. 2013; 92(6):1474-85. https://doi.org/10.3382/ps.2012-02840

‎58. ‎ Fathi MM, Galal A, Radwan LM, Abou-emera OK, Al-homidan IH. Using major ‎genes to mitigate the deleterious effects of heat stress in poultry : an updated ‎review. Poult Sci. 2022;101(11):102157. https://doi.org/10.1016/j.psj.2022.102157

‎59. ‎ Deeb N, Cahaner A. Genotype-by-Environment Interaction with Broiler ‎Genotypes Differing in Growth Rate : 2 . The Effects of High Ambient ‎Temperature on Dwarf Versus Normal Broilers. Poult Sci. 2001;80(5):541-8. ‎https://doi.org/10.1093/ps/80.5.541

‎60. ‎ Ranjan A, Sinha R, Devi I, Rahim A, Tiwari S. Effect of heat stress on poultry ‎production and their managemental approaches. Int J Microbio App Sci. 2019; ‎‎8(2):1548-1555. https://doi.org/10.20546/ijcmas.2019.802.181

‎61. ‎ Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress ‎effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci. ‎‎2023;10:1-12. https://doi.org/10.3389/fvets.2023.1255520

‎62. ‎ Oloyo A, Ojerinde A. Poultry Housing and Management.In: Kamboh A.A. ‎Editors.Poult - An Advance Learning.London. IntechOpen .2020;1-17p. https://doi.org/10.5772/intechopen.83811

‎63. ‎ Saeed M, Abbas G, Alagawany M, Kamboh AA, Abd El-Hack ME, Khafaga AF, ‎et al. Heat stress management in poultry farms: A comprehensive overview. J ‎Therm Biol. 2019;84(July):414-25. ‎https://doi.org/10.1016/j.jtherbio.2019.07.025

‎64. ‎ Alchalabi D. Poultry Housing Design [Internet]. Baghdad: ResearchGate; 2013 ‎Nov [cited 2024 Aug 15]. Available from: ‎https://www.researchgate.net/publication/266910168‎

‎65. ‎ Daghir NJ. Poultry production in hot climates. 2nd ed. Wallingford (UK): CABI; ‎‎2008. 387 p. ‎

https://doi.org/10.1079/9781845932589.0000

‎66. ‎ Bhadauria P, Keshava P, Mamgai A, Murai Y. Management of heat stress in ‎poultry production system. ICAR-Agiculural Technology Application Research ‎Institute, Zone-1, Ludhiana-141004. 2017. ‎file:///C:/Users/user/Downloads/ManagementofHeatStressinpoultry-Allpages.pdf

‎67. ‎ Oke OE, Uyanga VA, Iyasere OS, Oke FO, Majekodunmi BC, Logunleko MO, ‎et al. Environmental stress and livestock productivity in hot-humid tropics : ‎Alleviation and future perspectives. J Therm Biol. 2021;100:103077. ‎https://doi.org/10.1016/j.jtherbio.2021.103077

‎68. ‎ Tierzucht L. Heat stress management. Germany, Lohmann. 2016.

Available from: ‎https://lohmannbreeders.com/media/2021/03/LTZ_MG_management-‎systems_EN.pdf

‎69. ‎ EuLA. Practical guidelines for disinfection with lime [Internet]. Brussels, Belgium: ‎European Lime Association; 2009. Available from: ‎http://www.uspoultry.org/animal_husbandry/files/2009 02 11 ‎Influenza_UK_web.pdf

‎70. ‎ Moreki JC, Magapatona S, Manyeula F. Effect of stocking density on performance ‎of broiler chickens. INT'L J. of Agric. and Rural dev. 2020;23(2):5367-72. ‎http://researchhub.buan.ac.bw:80/handle/123456789/40‎

‎71. ‎ Kang HK, Park SB, Jeon JJ, Kim HS, Kim SH, Hong E, et al. Effect of stocking ‎density on laying performance, egg quality and blood parameters of hy-line brown ‎laying hens in an aviary system. Eur Poult Sci. 2018;82:1-13. ‎‎https://doi.org/10.1399/eps.2018.245

‎72. ‎ Gholami M, Chamani M, Seidavi A, Sadeghi AA, Aminafschar M. Effects of ‎stocking density and climate region on performance, immunity, carcass ‎characteristics, blood constitutes, and economical parameters of broiler chickens. ‎Rev Bras Zootec. 2020;49(2016):1-16. https://doi.org/10.37496/rbz4920190049

‎73. ‎ Nilsson J-Å, Molokwu MN, Olsson O. Body Temperature Regulation in Hot ‎Environments. PLoS One. 2016; 11 (8):119-45. ‎

https://doi.org/10.1371/journal.pone.0161481

‎74. ‎ Oni AI, Abiona JA, Fafiolu AO, Oke OE. Early-age thermal manipulation and ‎supplemental antioxidants on physiological, biochemical and productive ‎performance of broiler chickens in hot-tropical environments. Stress. 2024;27(1). ‎

https://doi.org/10.1080/10253890.2024.2319803

‎75. ‎ Yahav S, Rath RS, Shinder D. The effect of thermal manipulations during ‎embryogenesis of broiler chicks (Gallus domesticus) on hatchability, body weight ‎and thermoregulation after hatch. J Therm Biol. 2004;29(4-5):245-50.

https://doi.org/10.1016/j.jtherbio.2004.03.002

‎76. ‎ Piestun Y, Shinder D, Ruzal M, Halevy O, Brake J, Yahav S. Thermal ‎manipulations during broiler embryogenesis: Effect on the acquisition of ‎thermotolerance. Poult Sci. 2008;87(8):1516-25. ‎https://doi.org/10.3382/ps.2008-00030

‎77. ‎ Yahav S, McMurtry JP. Thermotolerance acquisition in broiler chickens by ‎temperature conditioning early in life - The effect of timing and ambient ‎temperature. Poult Sci. 2001;80(12):1662-6. ‎https://doi.org/10.1093/ps/80.12.1662

‎78. ‎ Rath P, Behura N, Sahoo S, Panda P, Mandal K, Panigrahi P. Amelioration of ‎Heat Stress for Poultry Welfare: A Strategic Approach. Int J Livest Res. ‎‎2015;5(3):1. https://doi.org/10.5455/ijlr.20150330093915

‎79. ‎ Yalçin S, Çabuk M, Bruggeman V, Babacanoǧlu E, Buyse J, Decuypere E, et al. ‎Acclimation to heat during incubation: 3. Body weight, cloacal temperatures, and ‎blood acid-base balance in broilers exposed to daily high temperatures. Poult Sci. ‎‎2008;87(12):2671-7.

https://doi.org/10.3382/ps.2008-00164

‎80. ‎ Bell DD, Weaver WD. Commercial chicken meat and egg production. 5th ed. ‎Boston: Springer; 2002. 1365 p.

https://doi.org/10.1007/978-1-4615-0811-3

‎81. ‎ Abreu PG de, Abreu VMN. Thermal Comfort for Poultry - Technical Release. ‎Embrapa Swine and Poultry. 2004; 365:5. Available from: ‎https://ainfo.cnptia.embrapa.br/digital/bitstream/item/85833/1/DCOT-365.pdf‎

‎82. ‎ Singh V, Chakrabarti A, Godara RS, Das A, Sahoo L, Devi HL et al. Heat stress ‎in poultry production and its management under changing climatic scenario. Ind ‎Farming Dig. 2022;1(1):1-17. ‎https://www.researchgate.net/publication/362312736_Heat_Stress_in_Poultry_Production_and_its_Management_under_Changing_Climatic_Scenario#fullTextFileContent

‎83. ‎ Garcês APJT, Afonso SMS, Chilundo A, Jairoce CTS. Evaluation of different ‎litter materials for broiler production in a hot and humid environment: 2. Productive ‎performance and carcass characteristics. Trop Anim Health Prod. 2017;49(2):369-‎‎374.

https://doi.org/10.1007/s11250-016-1202-7

‎84. ‎ Manafi M. Poultry litter selection, management and utilization in the tropics. 1st ed. ‎Zagreb: Intechopen; 2017. 191 p.‎

‎85. ‎ Olanrewaju HA, Purswell JL, Collier SD, Branton SL. Effect of light intensity ‎adjusted for species-specific spectral sensitivity on blood physiological variables of ‎male broiler chickens. Poult Sci. 2019;98(3):1090-5. ‎https://doi.org/10.3382/ps/pey487

‎86. ‎ Mendes AS, Paixão SJ, Restelatto R, Morello GM, de Moura DJ, Possenti JC. ‎Performance and preference of broiler chickens exposed to different lighting ‎sources. J Appl Poult Res. 2013;22(1):62-70. https://doi.org/10.3382/japr.2012-00580

‎87. ‎ Abbas AO, El-Dein AA, Desoky AA, Galal MA. The effects of photoperiod ‎programs on broiler chicken performance and immune response. Int J Poult Sci. ‎‎2008;7(7):665-671. https://doi.org/10.3923/ijps.2008.665.671

‎88. ‎ Lin H, Jiao HC, Buyse J, Decuypere E. Strategies for preventing heat stress in ‎poultry. Worlds Poult Sci J. 2006;62(1) :71-86 .

https://doi.org/10.1079/WPS200585

‎89. ‎ De Oliveira RG, Lara LJC. Lighting programmes and its implications for broiler ‎chickens. Worlds Poult Sci J. 2016;72(4):735-41. ‎

https://doi.org/10.1017/S0043933916000702

‎90. ‎ Petek M, Sönmez G, Yildiz H, Baspinar H. Effects of different management ‎factors on broiler performance and incidence of tibial dyschondroplasia. Br Poult ‎Sci. 2005;46(1):16-21. https://doi.org/10.1080/00071660400023821

‎91. ‎ Ryu ST, Park BS, Bang HT, Kang HK, Hwangbo J. Effects of anti-heat diet and ‎inverse lighting on growth performance, immune organ, microorganism and short ‎chain fatty acids of broiler chickens under heat stress. J Environ Biol. ‎‎2016;37(2):185-92. https://pubmed.ncbi.nlm.nih.gov/27097436/‎

‎92. ‎ Abdo SE, El-Kassas S, El-Nahas AF, Mahmoud S. Modulatory effect of ‎monochromatic blue light on heat stress response in commercial broilers. Oxi Med ‎Cell Long. 2017; 2017(1):1351945. https://doi.org/10.1155/2017/1351945

‎93. ‎ Nawab A, Ibtisham F, Li G, Kieser B, Wu J, Liu W, et al. Heat stress in poultry ‎production: Mitigation strategies to overcome the future challenges facing the ‎global poultry industry. J Therm Biol. 2018;78:131-9. ‎https://doi.org/10.1016/j.jtherbio.2018.08.010

‎94. ‎ Yalcin S, Özkan S, Türkmut L, Siegel PB. Responses to heat stress in commercial ‎and local broiler stocks. 2. Developmental stability of bilateral traits. Br Poult Sci. ‎‎2001;42(2):153-60. https://doi.org/10.1080/00071660120048384

‎95. ‎ Mohamed ASA, Lozovskiy AR, Ali AMA. Strategies to combat the deleterious ‎impacts of heat stress through feed restrictions and dietary supplementation ‎‎(vitamins, minerals) in broilers. J Indones Trop Anim Agric. 2019;44(2):155-66. ‎‎https://doi.org/10.14710/jitaa.44.2.155-166

‎96. ‎ Wiernusz CJ, Teeter RG. Acclimation effects on fed and fasted broiler ‎thermobalance during thermoneutral and high ambient temperature exposure. Br ‎Poult Sci. 1996;37(3):677-87. https://doi.org/10.1080/00071669608417897

‎97. ‎ Farghly MFA, Mahrose KM, Galal AE, Ali RM, Ahmad EAM, Rehman ZU, et ‎al. Implementation of different feed withdrawal times and water temperatures in ‎managing turkeys during heat stress. Poult Sci. 2018;97(9):3076-84. ‎https://doi.org/10.3382/ps/pey173

‎98. ‎ De Basilio V, Vilariño M, Yahav S, Picard M. Early age thermal conditioning and ‎a dual feeding program for male broilers challenged by heat stress. Poult Sci. ‎‎2001;80(1):29-36. https://doi.org/10.1093/ps/80.1.29

‎99. ‎ Lozano C, De Basilio V, Oliveros I, Alvarez R, Colina I, Bastianelli D, et al. Is ‎sequential feeding a suitable technique to compensate for the negative effects of a ‎tropical climate in finishing broilers?. Ani Res. 2006;55(1):71-6. ‎https://doi.org/10.1051/animres:2005047

‎100. ‎ Geraert PA. Métabolisme énergétique du poulet de chair en climat chaud. ‎Productions Animales. 1991;4(3):257-267.

https://doi.org/10.20870/productions-animales.1991.4.3.4340

‎101. ‎ Iyasere OS, Bateson M, Beard AP, Guy JH. Provision of Additional Cup Drinkers ‎Mildly Alleviated Moderate Heat Stress Conditions in Broiler Chickens. J Appl ‎Anim Welf Sci. 2021;24(2):188-99. ‎https://doi.org/10.1080/10888705.2020.1846534

‎102. ‎ Syafwan S, Kwakkel RP, Verstegen MWA. Heat stress and feeding strategies in ‎meat-type chickens. Worlds Poult Sci J. 2011;67(4):653-674. ‎https://doi.org/10.1017/S0043933911000742

‎103. ‎ Ashraf Waiz H, Gautam L, Nagda RK, Ahmad Bhat G. Effect of wet feeding on ‎feed conversion efficiency in laying hens during summer season. Iran J Appl Anim ‎Sci. 2016;6(2):383-387. ‎https://www.researchgate.net/publication/316587737_Effect_of_wet_feeding_on_feed_conversion_efficiency_in_laying_hens_during_summer_season#fullTextFileContent

‎104. ‎ Waiz HA, Gautam LK, Nisar NA, Rathore NS, Nagda RK. Effect of wet feeding ‎on egg quality parameters in laying hens. Vet Pract. 2016;17(1):142-144. ‎https://www.researchgate.net/publication/307597503_Effect_of_wet_feeding_on_‎egg_quality_parameters_in_laying_hens#fullTextFileContent

‎105. ‎ Awojobi HA, Oluwole BO, Adekunmisi AA, Buraimo RA. Performance of ‎finisher broilers fed wet mash with or without drinking water during wet season in ‎the tropics. Int J Poult Sci. 2009;8(6):592-4. https://doi.org/10.3923/ijps.2009.592.594

‎106. ‎ Bruno LDG, Maiorka A, Macari M, Furlan RL, Givisiez PEN. Water intake ‎behavior of broiler chickens exposed to heat stress and drinking from bell or and ‎nipple drinkers. Rev Bras Cienc Avic / Brazilian J Poult Sci. 2011;13(2):147-‎‎152.

https://doi.org/10.1590/S1516-635X2011000200009

‎107. ‎ Mushtaq MMH, Pasha TN, Mushtaq T, Parvin R. Electrolytes, dietary electrolyte ‎balance and salts in broilers: An updated review on growth performance, water ‎intake and litter quality. Worlds Poult Sci J. 2013;69(4):789-802. ‎https://doi.org/10.1017/S0043933913000810

‎108. ‎ Chaiyabutr N. Physiological reactions of poultry to heat stress and methods to ‎reduce its effects on poultry production. The Thai J Vet Medi. 2004;34(2):17-30. ‎https://doi.org/10.56808/2985-1130.1966

‎109. ‎ Park S-O, And B-SP, Hwangbo J. Effect of cold water and inverse lighting on ‎growth performance of broiler chickens under extreme heat stress. J. Environ. Biol. ‎‎2015;36:865-73. ‎https://www.researchgate.net/publication/281780867_Effect_of_cold_water_and_inverse_lighting_on_growth_performance_of_broiler_chickens_under_extreme_heat_stress

‎110. ‎ Valbuena D. Feed and water management strategies to mitigate heat stress in layers ‎‎[Internet]. Germany: EW Nutrition; 2023 Dec 6 [cited 2024 Aug 15]. Available ‎from: https://ew-nutrition.com/feed-water-management-strategies-heat-stress-layers/‎

‎111. ‎ Quilumba C, Quijia E, Gernat A, Murillo G, Grimes J. Evaluation of different ‎water flow rates of nipple drinkers on broiler productivity. J Appl Poult Res. ‎‎2015;24(1):58-65. https://doi.org/10.3382/japr/pfv005

‎112. Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RJ. ‎Adaptation to hot climate and strategies to alleviate heat stress in livestock ‎production. Animal. 2012;6(5):707-28. ‎https://doi.org/10.1017/S1751731111002448

‎113. ‎ Ghazalah AA, Abd-Elsamee MO, Ali AM. Influence of dietary energy and poultry ‎fat on the response of broiler chicks to heat therm. Int J Poult Sci. 2008;7(4):355-‎‎359. https://doi.org/10.3923/ijps.2008.355.359

‎114. ‎ Zulkifli I, Ginsos J, And PKL, Gilbert J. Growth performance and Newcastle ‎disease antibody titres of broiler chickens fed palm-based diets and their response ‎to heat stress during fasting. 2003;67(3):125-30. ‎

‎115. ‎ Balnave D, Brake J. Nutrition and management of heat-stressed pullets and laying ‎hens. World's Poult Sci J. 2005;61(3):399-406. ‎

https://doi.org/10.1079/WPS200565

‎116. ‎ Attia YA, Hassan SS. Broiler tolerance to heat stress at various dietary ‎protein/energy levels. European Poultry Science/Archiv für Geflügelkunde. ‎‎2017;81(171). https://doi.org/10.1399/eps.2017.171

‎117. ‎ Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, L. R. ‎M. Sá , et al. Heat stress impairs performance parameters , induces intestinal injury ‎‎, and decreases macrophage activity in broiler chickens. Poult Sci. ‎‎2010;89(May):1905-1914.

https://doi.org/10.3382/ps.2010-00812

‎118. ‎ Mendes AA, Watkins SE, England JA, Saleh EA, Waldroup AL, Waldroup PW. ‎Influence of dietary lysine levels and arginine: lysine ratios on performance of ‎broilers exposed to heat or cold stress during the period of three to six weeks of ‎age. Poult Sci. 1997;76(3):472-81. https://doi.org/10.1093/ps/76.3.472

‎119. ‎ Chen JA, Hayat JA, Huang BA, Balnave DA, Brake JB. Responses of broilers at ‎moderate or high temperatures to dietary arginine : lysine ratio and source of ‎supplemental methionine activity. Austra J Agri Res. 2003;54(2):177-81. ‎https://doi.org/10.1071/AR02117

‎120. ‎ Borges SA, Da Silva AF, Maiorka A. Acid-base balance in broilers. World's ‎Poultry Science Journal. 2007;63(1):73-81. ‎

https://doi.org/10.1017/S0043933907001286

‎121. ‎ Naseem MT, Naseem S, Younus M, Iqbal Ch. Z, Ghafoor A, Aslam A, et al. ‎Effect of potassium chloride and sodium bicarbonate supplementation on ‎thermotolerance of broilers exposed to heat stress. Int J Poult Sci. 2005;4(11):891-‎‎5. https://doi.org/10.3923/ijps.2005.891.895

‎122. ‎ Senkoylu N, Akyurek H, Agma HES. Assessment the Impacts of Dietary ‎Electrolyte Balance Levels on Laying Performance of Commercial White Layers. ‎Pakistan J Nutr. 2005;4(6):423-7. https://doi.org/10.3923/pjn.2005.423.427

‎123. ‎ Khan RU, Naz S, Nikousefat Z, Selvaggi M, Laudadio V, Tufarelli V. Effect of ‎ascorbic acid in heat-stressed poultry. World's Poult Sci J. 2012;68(3):477-490. ‎https://doi.org/10.1017/S004393391200058X

‎124. ‎ Attia YA, Al-harthi MA, El-shafey AS, Rehab YA, Kim WK. Enhancing ‎tolerance of broiler chickens to heat stress by supplementation with vitamin E, ‎vitamin C and/or probiotics. 2017;17(4):1155-69. https://doi.org/10.1515/aoas-2017-0012

‎125. ‎ Dalólio FS, Albino LFT, Lima HJD, da Silva JN, Moreira J. Heat stress and ‎vitamin E in diets for broilers as a mitigating measure. Acta Sci - Anim Sci. ‎‎2015;37(4):419-27. https://doi.org/10.4025/actascianimsci.v37i4.27456

‎126. ‎ Khan RU, Naz S, Nikousefat Z, Tufarelli V, Javdani M, Rana N, et al. Effect of ‎vitamin e in heat-stressed poultry. Worlds Poult Sci J. 2011;67(3):469-478. ‎https://doi.org/10.1017/S0043933911000511

‎127. ‎ Bollengier-Lee S. Optimal dietary concentration of vitamin E for alleviating the ‎effect of heat stress on egg production in laying hens. Brit Poult Sci. ‎‎1999;40(1):102-107. https://doi.org/10.1080/00071669987917

‎128. ‎ Sahin K, Kucuk O. Effects of vitamin E and selenium on performance, digestibility ‎of nutrients, and carcass characteristics of Japanese quails reared under heat stress ‎‎(34˚C). J Ani Physio Ani Nutri. 2001; Dec 20;85(11‐12):342-8. ‎

https://doi.org/10.1046/j.1439-0396.2001.00340.x

‎129. ‎ Cao C, Chowdhury VS, Cline MA, Gilbert ER. The microbiota-gut-brain axis ‎during heat stress in chickens: a review. Front Physio. 2021;12:752265. ‎https://doi.org/10.3389/fphys.2021.752265

‎130. ‎ Wang WC, Yan FF, Hu JY, Amen OA, Cheng HW. Supplementation of Bacillus ‎subtilis-based probiotic reduces heat stress-related behaviors and inflammatory ‎response in broiler chickens. J Anim Sci. 2018;96(5):1654-1666. ‎https://doi.org/10.1093/jas/sky092

‎131. ‎ Deng W, Dong XF, Tong JM, Zhang Q. The probiotic Bacillus licheniformis ‎ameliorates heat stress-induced impairment of egg production, gut morphology, ‎and intestinal mucosal immunity in laying hens. Poult Sci. 2012;91(3):575-82. ‎

https://doi.org/10.3382/ps.2010-01293

‎132. ‎ Hasan S, Hossain MM, Alam J, Bhuiyan MER. Beneficial effects of probiotic on ‎growth perfirmance and hemato-biochemical parameters in broilers during heat ‎stress. Int J Innov Appl Stud. 2015;10(1):244-249. http://www.ijias.issr-‎journals.org/‎

‎133. ‎ Sayed Y, Hassan M, Salem HM, Al-Amry K, Eid GE. Prophylactic influences of ‎prebiotics on gut microbiome and immune response of heat-stressed broiler ‎chickens. Sci Rep. 2023;13(1):1-17. https://doi.org/10.1038/s41598-023-40997-7

‎134. ‎ Teng PY, Kim WK. Review: Roles of prebiotics in intestinal ecosystem of ‎broilers. Front Vet Sci. 2018;5:1-18.

https://doi.org/10.3389/fvets.2018.00245

‎135. ‎ Sugiharto S. Role of nutraceuticals in gut health and growth performance of ‎poultry. J Saudi Soc Agric Sci. 2016;15(2):99-111. ‎

https://doi.org/10.1016/j.jssas.2014.06.001

‎136. ‎ Awad W, Ghareeb K, Böhm J. Intestinal structure and function of broiler chickens ‎on diets supplemented with a synbiotic containing Enterococcus faecium and ‎oligosaccharides. Int J Mol Sci. 2008;9(11):2205-2216. ‎https://doi.org/10.3390/ijms9112205

‎137. ‎ Sohail MU, Ijaz A, Yousaf MS, Ashraf K, Zaneb H, Aleem M, et al. Alleviation ‎of cyclic heat stress in broilers by dietary supplementation of mannan-‎oligosaccharide and lactobacillus-based probiotic: Dynamics of cortisol, thyroid ‎hormones, cholesterol, C-reactive protein, and humoral immunity. Poult Sci. ‎‎2010;89(9):1934-8. https://doi.org/10.3382/ps.2010-00751

‎138. ‎ Ashraf S, Zaneb H, Yousaf MS, Ijaz A, Sohail MU, Muti S, et al. Effect of dietary ‎supplementation of prebiotics and probiotics on intestinal microarchitecture in ‎broilers reared under cyclic heat stress. J Anim Physiol Anim Nutr. 2013;97:68-‎‎73.‎

https://doi.org/10.1111/jpn.12041

‎139. ‎ Awad EA, Zulkifli I, Ramiah SK, Khalil ES, Abdallh ME. Prebiotics ‎supplementation: an effective approach to mitigate the detrimental effects of heat ‎stress in broiler chickens. Worlds Poult Sci J. 2021;77(1):1-17. ‎https://doi.org/10.1080/00439339.2020.1759222

Similar Articles

You may also start an advanced similarity search for this article.