Population Genetic Structure of Three Cichlids in Ilorin, North-Central Nigeria
Main Article Content
Abstract
Cichlids are among the economically important which serve as a source of food for people around the world. A deep understanding of the population structure and genetic diversity of cichlids are vital for initiation of conservation policies and sustainable aquaculture. There is paucity of information on the patterns of genetic variations among and within cichlids in North-central Nigeria. This study, therefore, investigated population genetic structure of Coptodon zillii, Oreochromis niloticus, and Hemichromis fasciatus collected from different freshwater bodies in North-central Nigeria. Genomic DNA was extracted, and five highly polymorphic RAPD primers were used for RAPD-PCR amplification and genotyping of the fish. Genetic polymorphism within and between the three tilapia species were examined. Percentages of polymorphism loci, pairwise population matrix, analysis of molecular variance (AMOVA), and genetic distances of cichlid populations were determined using standard methods, and dendrograms were constructed using an un-weighted pair group method of arithmetic mean (UPGMA). Overall, percentages of estimated molecular variance within and among C. zillii, H. fasciatus and O. niloticus populations were 5% and 95%; 4% and 96% and 13% and 87%, respectively. Our results suggest that the three cichlids have close evolutionary relationship and there were no distinct genetic differences on the basis on sampling locations. C. zillii and H. fasciatus are more genetically closer than O. niloticus. This study concludes that RAPD is useful in studying the population genetic structure of cichlids. This study therefore recommends conservation of genetic pool of cichlid species through proper maintenance and restoration of polluted habitat to guarantee sustainable fishery production. However, markers such as microsatellite DNA can be assayed in further studies for better results.
Downloads
Article Details
How to Cite
References
Bawaa DY, Nurul-Amin SM, Arshad A, Yusoff FM, Argungu LA. Fish species composition and morphological descriptions of five dominant families from Inland waters of Kebbi State, Nigeria. Asia J Fish Aqua Res. 2019; 3(1): 1-8. https://doi.org/10.9734/ajfar/2019/v3i130024
Idodo-Umeh G. Freshwater fishes of Nigeria (taxonomy, ecological notes, diet and utilization). Benin-City, Nigeria: Idodo-Umeh Publ. Ltd. 2003; 232 p.
Meye J, Ikomi RB. Study on the fish fauna of Urie Creek at Igbide, Niger Delta. The Zool. 2008; 6(1): 69-80. https://doi.org/10.4314/tzool.v6i1.41356
Emmanuel L, Modupe O. Fish diversity in three tributaries of River Ore, Southwest, Nigeria. World J Fish Mar Sci. 2010; 2: 524-531.
Olaosebikan BD, Raji A. Field guide to Nigerian freshwater fishes. Federal College of Freshwater Fisheries Technology, New Bussa. 2013. 144 p.
Omotosho JS. Analysis of fish species composition of Oyun mini-dam. Nig J West Afric Sci Assoc. 1993; 36: 37-48.
Omotosho JS. Icththyofauna diversity of Asa reservoir, Ilorin, Nigeria. Biosci. 1997; 36: 37-48.
Araoye PA. Spatio-temporal distribution of the fish Synodontis schall Teleostei: Mochokidae) in Asalake, Ilorin, Nigeria. Revista Biologia Tropical. 1999; 47(4): 1061-1066. https://doi.org/10.15517/rbt.v47i4.19311
Mustapha MK. Fish fauna of Oyun reservoir, Offa, Nigeria. J Aqua Sci. 2010; 25(1): 106-114.
Oladipo SO, Mustapha MK, Suleiman LK, Anifowoshe AT. Fish composition and diversity assessment of Apodu reservoir, Malete, Nigeria. Int J Fish Aquat Sci. 2018; 6(2): 89-93.
Trewavas E. Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. British museum natural history, London and Cornell & University Press. Ithaca, New York, USA. 1983; 583 p. https://doi.org/10.5962/bhl.title.123198
Vences M, Freyhof J, Sonnenberg R, Kosuch J, Veith M. Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar. J Biogeo. 2001; 28: 1091-1099. https://doi.org/10.1046/j.1365-2699.2001.00624.x
Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nat 2014; 513(7518): 375-381.
Carvalho GR. Evolutionary aspects of fish distribution: Genetic variability and adaptation. J Fish Biol. 1993; 43(Suppl A): 53-73. https://doi.org/10.1006/jfbi.1993.1208
Sanches A, Galetti PM. Jr. Genetic evidence of population sub-structuring in the freshwater fish Bryconhilarii. Braz J Biol. 2007; 67:889-895. https://doi.org/10.1590/S1519-69842007000500012
Kocher TD. Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet. 2004; 288-98. https://doi.org/10.1038/nrg1316
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding of Australia’s fish species. Philo Trans Royal Soc Biol Sci. 2005; 360: 1847-1857. https://doi.org/10.1098/rstb.2005.1716
Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, et al. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE. 2008; 3(6): e2490. https://doi.org/10.1371/journal.pone.0002490
Ward RD, Hanner R,Hebert PDN. The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol. 2009; 74: 329-356. https://doi.org/10.1111/j.1095-8649.2008.02080.x
Nwani CD, Becker S, Braid HE, Ude EF, Okogwu OI, Hanner R. DNA barcoding discriminates freshwater fishes from south-eastern Nigeria and provides river system-level phylogeographic resolution within some species. Mitochondrial DNA 2011; 22(Sup1): 43-51. https://doi.org/10.3109/19401736.2010.536537
Iyiola OA, Nneji LM, Mustapha MK, Nzeh CG, Oladipo SO, Nneji IC, et al. DNA barcoding of economically important freshwater fish species from North-central Nigeria uncovers cryptic diversity. Ecol Evol 2018; 8(14): 6932-6951.
Falk TM, Teugels GG, Abban EK. Genetic diversity of West African tilapias and its implications for fisheries, aquaculture and biodiversity conservation: case studies on Sarotherodon melanotheron, Sarotherodon nigripinnis and Tilapia guineensis. In: Abban EK, Dugan P, Casal CMV, Falk TM, editors. Biodiversity, Management and Utilization of West African Fishes. Malaysia: World Fish Center. 2004. p. 6-11. https://doi.org/10.1002/ece3.4210
Oladipo SO, Mustapha MK, Suleiman LK, Anifowoshe AT. Fish composition and diversity assessment of Apodu reservoir, Malete, Nigeria. Int J Fish Aquat Stud. 2018; 6(2): 89-93.
Azrita H, Syandri J. Genetic variation among a sang fish (Osteochilus vittatus Cyprinidae) populations using random amplified polymorphic DNA (RAPD) markers. Int J Fish Aquat Stud. 2014; 1(6): 213-217.
Abu-Almaaty AH, Abu-ElRegal M, Mar`ie ZA, Abdel-Basset ME. Genetic relationship between five fish species of genus Scarus using RAPD assay. Egypt J Aquat Biol Fish. 2015; 19(3): 9-22. https://doi.org/10.21608/ejabf.2015.2267
Barman HK, Barat A, Yadav BM, Banerjee S, Meher PK, Reddy PVG. et al. Genetic variation between four species of Indian carp as revealed by random amplified polymorphic DNA assay. Aquac. 2003; 217: 115-123. https://doi.org/10.1016/S0044-8486(02)00357-5
Abu-Almaaty AH, Abdel-Basset ME, Mohammad A. Genetic characterization of four fish species of Genus Synodontis using RAPD marker. Indian J Geo Mar Sci. 2018; 47(12): 2395-2406.
Ikpeme EV, Udensi OU, Ekaluo UB, Kooffreh ME, Okolo CM, Ekpo PB, et al. Unveiling the genetic diversity in Clarias gariepinus (Burchell, 1822) using random amplified polymorphic DNA (RAPD) fingerprinting technique. Asian J Anim Sci. 2015; 9: 187-197. https://doi.org/10.3923/ajas.2015.187.197
Lind CE, Agyakwah SK, Attipoe FY, Nugent C, Crooijmans RPMA, Toguyeni A. Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Sci Rep. 2019; 9: 16767. https://doi.org/10.1038/s41598-019-53295-y
Zhou Y, Tong J, Wang J, Yu X. Development of microsatellite markers and genetic diversity in wild and cultured populations of black carp (Mylopharyngodon piceus) along the Yangtze River. Aquacult Int. 2020; 28(2): 1867-1882. https://doi.org/10.1007/s10499-020-00563-8
Omotosho JS. Icththyofauna diversity of Asa reservoir, Ilorin, Nigeria. Nig J Appl Sci. 1998; 10(1): 75-81.
Nei M. Genetic distance between populations. The Am Nat. 1972; 106(949): 283-289.
Ahmed MMM, Ali BA, El-Zaeem SY. Application of RAPD markers in fish: Part I- Some genera (Tilapia Sarotherodon and Oreochromis) and species (Oreochromis aureus and Oreochromis niloticus) of Tilapia. Int J Biotech. 2004; 6(1): 86-93. https://doi.org/10.1086/282771
Fan S, Elmer KR, Meyer A. Genomics of adaptation and speciation in Cichlid fishes: recent advances and analyses in African and Neotropical lineages. Philos Trans R Soc. 2012; 367: 385-394. https://doi.org/10.1098/rstb.2011.0247
Cabej NR. Epigenetics of Sympatric speciation- Speciation as a mechanism of Evolution. Epigenetic Principles of Evolution, 2019. 2nd Edition, 783-806 p. https://doi.org/10.1016/B978-0-12-814067-3.00013-2
Ertas H, Seker E. Isolation of Listeria monocytogenes from fish intestines and RAPD analysis. Turkish J Vet Anim Sci. 2005; 29(4): 1007-1011.
Fuchs H, Gross R, Stein H, Rottmann O. Application of molecular genetic markers for the differentiation of bream (Abramis brama L.) populations from the rivers Main and Danube. J Appl Ichthyol. 1998; 14: 49-55. https://doi.org/10.1111/j.1439-0426.1998.tb00613.x
Bardakci F, Skibinski DOF. Application of the RAPD technique in tilapia fish: species and subspecies identification. Heredity. 1994; 73: 117-123. https://doi.org/10.1038/hdy.1994.110
Brahmane MP, Das MK, Singh MR, Sugunan VV, Mukharnmjee A, Singh SN, et al. Use of RAPD fingerprinting for the delineating populations of Hilsa shad Tenualosa ilisha (Hamilton, 1822). Genet Mol Res. 2006; 5(4): 643-652.
Liu ZJ, Li P, Argue BJ, Dunham RA. Random amplified polymorphic DNA markers: Usefulness for gene mapping and analysis of genetic variation of catfish. Aqua. 1999; 174: 59-68. https://doi.org/10.1016/S0044-8486(99)00007-1
Fadly EG, Khatab I, Rehan M, Kalboush A. Genetic diversity in Egyptian populations of tilapia species using RAPD and SRAP markers. J Biodivers Environ Sci. 2016; 8(4): 231-243.
Basavaraju Y, Prasad DT, Rani K, Kumar SP, Naika UD, Jahageerdar S, et al. Genetic diversity in common carp stocks assayed by random-amplified polymorphic DNA markers. Aquac Res. 2077; 38(2): 147-155.
Ryman N, Utter F, Laikre L. Protection of intraspecific biodiversity of exploited fishes. Rev Fish Biol Fish. 1995; 5(4): 417-446. https://doi.org/10.1007/BF01103814
Megbowon I. Genetic evaluation of some Tilapiine fishes using varying RAPD markers. Int J Fish Aqua Stud. 2019; 7(4): 275-279.
Asagbra MC, Adebayo AS, Ugwumba OA, Ugbwumba AAA, Anumudu CI. Genetic characterization of fin fish species from the Warri River at Ubeji, Niger Delta, Nigeria. Afric J Biotech. 2014; 13(27): 2689-2695. https://doi.org/10.5897/AJB2013.11982
Garg RK, Silawat N, Sairkar P, Vijay N, Mehrotra NN. RAPD analysis for genetic diversity of two populations of Mystus vittatus (Bloch) of Madhya Pradesh, India. Afr J Biotech. 2009; 8(17): 4032-4038.
Mahboob S, Al-Ghanim KA, Al-Misned F, Al-Balawi HFA, Ashraf A. Genetic diversity in tilapia populations in a freshwater reservoir assayed by randomly amplified polymorphic DNA markers. Saudi J Biol Sci. 2019; 26: 363-367. https://doi.org/10.1016/j.sjbs.2018.11.015
Okoro HK, Iyiola OA, Simon I, Oladipo SO. Determination of heavy metal genotoxicity and their accumulation pattern in different fish organs of selected fish species collected from the Asa River, Ilorin, Kwara State, Nigeria. J Appl Sci Environ Manag. 2016; 20(3): 735-745. https://doi.org/10.4314/jasem.v20i3.28
Anifowoshe AT, Oladipo SO, Owolodun OA, Akinseye MK, Olafimihan TF, SidiqAG, et al. Ecogenotoxicogical assessments of some selected fish species from Apodu reservoir, Malete, North-central, Nigeria. Manila J Sci. 2018; 11: 1-14.
Anifowoshe AT, Oladipo SO, Adebayo O, Eboh OS, Abdussalam AR, Adegbenro AM, et al. Induction of Micronuclei, Base-pair Substitution Mutation and Excision-repair Deficient by Polluted Water from Asa River in Nigeria. Ann Sci Technol. 2019; 4 (2): 68-77. https://doi.org/10.2478/ast-2019-0012
Gopalakrishnan A, Musammilu KK, Basheer VS, John L, Padmakumar KG, LalK K, et al. Low genetic differentiation in the populations of the Malabar carp, Labeodussumieri as revealed by Allozymes, Microsatellites and RAPD. Asian Fish Sci. 2009; 22: 359-391. https://doi.org/10.33997/j.afs.2009.22.2.001
Hassanien H, Elnady M, Obeida A, Itriby H. Genetic diversity of Nile Tilapia populations revealed by randomly amplified polymorphic DNA (RAPD). Aqua Res. 2004; 35: 587-593. https://doi.org/10.1111/j.1365-2109.2004.01057.x
Mojekwu TO, Oguntade OR, Oketoki TO, Usman AB, Omidiji O. Molecular characterization of Tilapia in different water bodies using RAPD markers. Afr J Appl Biotech Res. 2013; 1: 1-12.
Omitoyin BO, Ajani EK, Osho EF. Genetic characterization of four strains of Oreochromis niloticus using the random amplified polymorphic DNA (RAPD). Nig J Rural Ext Dev. 2014; 8: 12-20.