Population Genetic Structure of Three Cichlids in ‎Ilorin, North-Central Nigeria

Main Article Content

Oluyinka A Iyiola
Rahmat D Shaibu
Segun O Oladipo
Kazeem O Kareem
Lotanna M Nneji
Adeniyi C Adeola
Abass T ‎ Anifowoshe
Moise M Matouke

Abstract





Cichlids are among the economically important which serve as a source of food for people ‎around the world. A deep understanding of the population structure and genetic diversity of ‎cichlids are vital for initiation of conservation policies and sustainable aquaculture. There is ‎paucity of information on the patterns of genetic variations among and within cichlids in ‎North-central Nigeria. This study, therefore, investigated population genetic structure of ‎Coptodon zillii, Oreochromis niloticus, and Hemichromis fasciatus collected from different ‎freshwater bodies in North-central Nigeria. Genomic DNA was extracted, and five highly ‎polymorphic RAPD primers were used for RAPD-PCR amplification and genotyping of the ‎fish. Genetic polymorphism within and between the three tilapia species were examined. ‎Percentages of polymorphism loci, pairwise population matrix, analysis of molecular variance ‎‎(AMOVA), and genetic distances of cichlid populations were determined using standard ‎methods, and dendrograms were constructed using an un-weighted pair group method of ‎arithmetic mean (UPGMA). Overall, percentages of estimated molecular variance within and ‎among C. zillii, H. fasciatus and O. niloticus populations were 5% and 95%; 4% and 96% and ‎‎13% and 87%, respectively. Our results suggest that the three cichlids have close evolutionary ‎relationship and there were no distinct genetic differences on the basis on sampling locations. ‎C. zillii and H. fasciatus are more genetically closer than O. niloticus. This study concludes that ‎RAPD is useful in studying the population genetic structure of cichlids. This study therefore ‎recommends conservation of genetic pool of cichlid species through proper maintenance and ‎restoration of polluted habitat to guarantee sustainable fishery production. However, markers ‎such as microsatellite DNA can be assayed in further studies for better results‎.





Downloads

Download data is not yet available.

Article Details

How to Cite
Population Genetic Structure of Three Cichlids in ‎Ilorin, North-Central Nigeria. (2022). The Iraqi Journal of Veterinary Medicine, 46(1), 1-9. https://doi.org/10.30539/ijvm.v46i1.1307
Section
Articles

How to Cite

Population Genetic Structure of Three Cichlids in ‎Ilorin, North-Central Nigeria. (2022). The Iraqi Journal of Veterinary Medicine, 46(1), 1-9. https://doi.org/10.30539/ijvm.v46i1.1307

References

Bawaa DY, Nurul-Amin SM, Arshad A, Yusoff FM, Argungu LA. Fish species composition ‎and morphological descriptions of five dominant families from Inland waters of Kebbi ‎State, Nigeria. Asia J Fish Aqua Res. 2019; 3(1): 1-8.‎ https://doi.org/10.9734/ajfar/2019/v3i130024

Idodo-Umeh G. Freshwater fishes of Nigeria (taxonomy, ecological notes, diet ‎and utilization). Benin-City, Nigeria: Idodo-Umeh Publ. Ltd. 2003; 232 p.‎

Meye J, Ikomi RB. Study on the fish fauna of Urie Creek at Igbide, Niger Delta. The Zool. ‎‎2008; 6(1): 69-80. https://doi.org/10.4314/tzool.v6i1.41356

Emmanuel L, Modupe O. Fish diversity in three tributaries of River Ore, Southwest, Nigeria. ‎World J Fish Mar Sci. 2010; 2: 524-531. ‎

Olaosebikan BD, Raji A. Field guide to Nigerian freshwater fishes. Federal College of ‎Freshwater Fisheries Technology, New Bussa. 2013. 144 p.‎

Omotosho JS. Analysis of fish species composition of Oyun mini-dam. Nig J West Afric Sci ‎Assoc. 1993; 36: 37-48. ‎

Omotosho JS. Icththyofauna diversity of Asa reservoir, Ilorin, Nigeria. Biosci. 1997; 36: 37-‎‎48.‎

Araoye PA. Spatio-temporal distribution of the fish Synodontis schall Teleostei: Mochokidae) ‎in Asalake, Ilorin, Nigeria. Revista Biologia Tropical. 1999; 47(4): 1061-1066. ‎https://doi.org/10.15517/rbt.v47i4.19311

Mustapha MK. Fish fauna of Oyun reservoir, Offa, Nigeria. J Aqua Sci. 2010; 25(1): 106-‎‎114.‎

Oladipo SO, Mustapha MK, Suleiman LK, Anifowoshe AT. Fish composition and diversity ‎assessment of Apodu reservoir, Malete, Nigeria. Int J Fish Aquat Sci. 2018; 6(2): 89-93.‎

Trewavas E. Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. British ‎museum natural history, London and Cornell & University Press. Ithaca, New York, ‎USA. 1983; 583 p. https://doi.org/10.5962/bhl.title.123198

Vences M, Freyhof J, Sonnenberg R, Kosuch J, Veith M. Reconciling fossils and molecules: ‎Cenozoic divergence of cichlid fishes and the biogeography of Madagascar. J Biogeo. ‎‎2001; 28: 1091-1099. https://doi.org/10.1046/j.1365-2699.2001.00624.x

Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al. The genomic substrate for ‎adaptive radiation in African cichlid fish. Nat 2014; 513(7518): 375-‎‎381.‎

Carvalho GR. Evolutionary aspects of fish distribution: Genetic variability and adaptation. J ‎Fish Biol. 1993; 43(Suppl A): 53-73.‎ https://doi.org/10.1006/jfbi.1993.1208

Sanches A, Galetti PM. Jr. Genetic evidence of population sub-structuring in the freshwater ‎fish Bryconhilarii. Braz J Biol. 2007; 67:889-895. https://doi.org/10.1590/S1519-69842007000500012

Kocher TD. Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev ‎Genet. 2004; 288-98.‎ https://doi.org/10.1038/nrg1316

Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding of Australia’s fish ‎species. Philo Trans Royal Soc Biol Sci. 2005; 360: 1847-1857.‎ https://doi.org/10.1098/rstb.2005.1716

Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, et al. Identifying ‎Canadian freshwater fishes through DNA barcodes. PLoS ONE. 2008; 3(6): e2490.‎ https://doi.org/10.1371/journal.pone.0002490

Ward RD, Hanner R,Hebert PDN. The campaign to DNA barcode all fishes, FISH-BOL. J ‎Fish Biol. 2009; 74: 329-356.‎ https://doi.org/10.1111/j.1095-8649.2008.02080.x

Nwani CD, Becker S, Braid HE, Ude EF, Okogwu OI, Hanner R. DNA barcoding ‎discriminates freshwater fishes from south-eastern Nigeria and provides river system-level ‎phylogeographic resolution within some species. Mitochondrial DNA 2011; ‎‎22(Sup1): 43-51. https://doi.org/10.3109/19401736.2010.536537

Iyiola OA, Nneji LM, Mustapha MK, Nzeh CG, Oladipo SO, Nneji IC, et al. DNA ‎barcoding of economically important freshwater fish species from North-central Nigeria ‎uncovers cryptic diversity. Ecol Evol 2018; 8(14): 6932-6951.

Falk TM, Teugels GG, Abban EK. Genetic diversity of West African tilapias and its ‎implications for fisheries, aquaculture and biodiversity conservation: case ‎studies on Sarotherodon melanotheron, Sarotherodon nigripinnis and Tilapia ‎guineensis. In: Abban EK, Dugan P, Casal CMV, Falk TM, editors. Biodiversity, Management and Utilization of West African Fishes. Malaysia: World Fish Center. ‎‎2004. p. 6-11.‎ https://doi.org/10.1002/ece3.4210

Oladipo SO, Mustapha MK, Suleiman LK, Anifowoshe AT. Fish composition and diversity ‎assessment of Apodu reservoir, Malete, Nigeria. Int J Fish Aquat Stud. 2018; 6(2): 89-93.‎

Azrita H, Syandri J. Genetic variation among a sang fish (Osteochilus vittatus Cyprinidae) ‎populations using random amplified polymorphic DNA (RAPD) markers. Int J Fish Aquat ‎Stud. 2014; 1(6): 213-217.‎

Abu-Almaaty AH, Abu-ElRegal M, Mar`ie ZA, Abdel-Basset ME. Genetic relationship ‎between five fish species of genus Scarus using RAPD assay. Egypt J Aquat Biol Fish. ‎‎2015; 19(3): 9-22. https://doi.org/10.21608/ejabf.2015.2267

Barman HK, Barat A, Yadav BM, Banerjee S, Meher PK, Reddy PVG. et al. ‎Genetic variation between four species of Indian carp as revealed by random amplified ‎polymorphic DNA assay. Aquac. 2003; 217: 115-123. https://doi.org/10.1016/S0044-8486(02)00357-5

Abu-Almaaty AH, Abdel-Basset ME, Mohammad A. Genetic characterization of four ‎fish species of Genus Synodontis using RAPD marker. Indian J Geo Mar Sci. 2018; ‎‎47(12): 2395-2406.

Ikpeme EV, Udensi OU, Ekaluo UB, Kooffreh ME, Okolo CM, Ekpo PB, et al. ‎Unveiling the genetic diversity in Clarias gariepinus (Burchell, 1822) using random ‎amplified polymorphic DNA (RAPD) fingerprinting technique. Asian J Anim Sci. 2015; ‎‎9: 187-197. https://doi.org/10.3923/ajas.2015.187.197

Lind CE, Agyakwah SK, Attipoe FY, Nugent C, Crooijmans RPMA, Toguyeni A. ‎Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Sci ‎Rep. 2019; 9: 16767. https://doi.org/10.1038/s41598-019-53295-y

Zhou Y, Tong J, Wang J, Yu X. Development of microsatellite markers and genetic ‎diversity in wild and cultured populations of black carp (Mylopharyngodon piceus) along ‎the Yangtze River. Aquacult Int. 2020; 28(2): 1867-1882. https://doi.org/10.1007/s10499-020-00563-8

Omotosho JS. Icththyofauna diversity of Asa reservoir, Ilorin, Nigeria. Nig J Appl Sci. ‎‎1998; 10(1): 75-81.‎

Nei M. Genetic distance between populations. The Am Nat. 1972; 106(949): 283-289.‎

Ahmed MMM, Ali BA, El-Zaeem SY. Application of RAPD markers in fish: Part I- Some ‎genera (Tilapia Sarotherodon and Oreochromis) and species (Oreochromis aureus and ‎Oreochromis niloticus) of Tilapia. Int J Biotech. 2004; 6(1): 86-93. https://doi.org/10.1086/282771

Fan S, Elmer KR, Meyer A. Genomics of adaptation and speciation in Cichlid fishes: ‎recent advances and analyses in African and Neotropical lineages. Philos Trans R Soc. ‎‎2012; 367: 385-394. https://doi.org/10.1098/rstb.2011.0247

Cabej NR. Epigenetics of Sympatric speciation- Speciation as a mechanism of Evolution. ‎Epigenetic Principles of Evolution, 2019. 2nd Edition, 783-806 p.‎ https://doi.org/10.1016/B978-0-12-814067-3.00013-2

Ertas H, Seker E. Isolation of Listeria monocytogenes from fish intestines and RAPD ‎analysis. Turkish J Vet Anim Sci. 2005; 29(4): 1007-1011.

Fuchs H, Gross R, Stein H, Rottmann O. Application of molecular genetic markers for the ‎differentiation of bream (Abramis brama L.) populations from the rivers Main and ‎Danube. J Appl Ichthyol. 1998; 14: 49-55. https://doi.org/10.1111/j.1439-0426.1998.tb00613.x

Bardakci F, Skibinski DOF. Application of the RAPD technique in tilapia fish: species ‎and subspecies identification. Heredity. ‎‎1994; 73: 117-123. https://doi.org/10.1038/hdy.1994.110

Brahmane MP, Das MK, Singh MR, Sugunan VV, Mukharnmjee A, Singh SN, et al. Use ‎of RAPD fingerprinting for the delineating populations of Hilsa shad Tenualosa ilisha ‎‎(Hamilton, 1822). Genet Mol Res. 2006; 5(4): 643-652.

Liu ZJ, Li P, Argue BJ, Dunham RA. Random amplified polymorphic DNA markers: ‎Usefulness for gene mapping and analysis of genetic variation of catfish. Aqua. 1999; 174: ‎‎59-68.‎ https://doi.org/10.1016/S0044-8486(99)00007-1

Fadly EG, Khatab I, Rehan M, Kalboush A. Genetic diversity in Egyptian populations of tilapia species using RAPD and SRAP markers. J Biodivers Environ Sci. 2016; 8(4): 231-‎‎243.‎

Basavaraju Y, Prasad DT, Rani K, Kumar SP, Naika UD, Jahageerdar S, et al. Genetic ‎diversity in common carp stocks assayed by random-amplified polymorphic DNA ‎markers. Aquac Res. 2077; 38(2): 147-155.

Ryman N, Utter F, Laikre L. Protection of intraspecific biodiversity of exploited fishes. ‎Rev Fish Biol Fish. 1995; 5(4): 417-446. https://doi.org/10.1007/BF01103814

Megbowon I. Genetic evaluation of some Tilapiine fishes using varying RAPD markers. Int J Fish Aqua Stud. 2019; 7(4): 275-279.‎

Asagbra MC, Adebayo AS, Ugwumba OA, Ugbwumba AAA, Anumudu ‎CI. Genetic characterization of fin fish species from the Warri River at Ubeji, Niger Delta, ‎Nigeria. Afric J Biotech. 2014; 13(27): 2689-2695. https://doi.org/10.5897/AJB2013.11982

Garg RK, Silawat N, Sairkar P, Vijay N, Mehrotra NN. RAPD analysis for genetic ‎diversity of two populations of Mystus vittatus (Bloch) of Madhya Pradesh, India. Afr J ‎Biotech. 2009; 8(17): 4032-4038.‎

Mahboob S, Al-Ghanim KA, Al-Misned F, Al-Balawi HFA, Ashraf A. Genetic diversity ‎in tilapia populations in a freshwater reservoir assayed by randomly amplified polymorphic ‎DNA markers. Saudi J Biol Sci. 2019; 26: 363-367.‎ https://doi.org/10.1016/j.sjbs.2018.11.015

Okoro HK, Iyiola OA, Simon I, Oladipo SO. Determination of heavy metal genotoxicity ‎and their accumulation pattern in different fish organs of selected fish species collected ‎from the Asa River, Ilorin, Kwara State, Nigeria. J Appl Sci Environ Manag. 2016; 20(3): ‎‎735-745. https://doi.org/10.4314/jasem.v20i3.28

Anifowoshe AT, Oladipo SO, Owolodun OA, Akinseye MK, Olafimihan TF, SidiqAG, et ‎al. Ecogenotoxicogical assessments of some selected fish species from Apodu reservoir, ‎Malete, North-central, Nigeria. Manila J Sci. 2018; 11: 1-14.

Anifowoshe AT, Oladipo SO, Adebayo O, Eboh OS, Abdussalam AR, Adegbenro ‎AM, et al. Induction of Micronuclei, Base-pair Substitution Mutation and Excision-repair ‎Deficient by Polluted Water from Asa River in Nigeria. Ann Sci Technol. 2019; 4 (2): 68-‎‎77. https://doi.org/10.2478/ast-2019-0012

Gopalakrishnan A, Musammilu KK, Basheer VS, John L, Padmakumar KG, LalK K, et ‎al. Low genetic differentiation in the populations of the Malabar carp, Labeodussumieri ‎as revealed by Allozymes, Microsatellites and RAPD. Asian Fish Sci. 2009; 22: 359-391.‎ https://doi.org/10.33997/j.afs.2009.22.2.001

Hassanien H, Elnady M, Obeida A, Itriby H. Genetic diversity of Nile Tilapia populations ‎revealed by randomly amplified polymorphic DNA (RAPD). Aqua Res. 2004; 35: 587-‎‎593.‎ https://doi.org/10.1111/j.1365-2109.2004.01057.x

Mojekwu TO, Oguntade OR, Oketoki TO, Usman AB, Omidiji ‎O. Molecular characterization of Tilapia in different water bodies using RAPD markers. ‎Afr J Appl Biotech Res. 2013; 1: 1-12.

Omitoyin BO, Ajani EK, Osho EF. Genetic characterization of four strains of Oreochromis ‎niloticus using the random amplified polymorphic DNA (RAPD). Nig J Rural Ext Dev. 2014; 8: ‎‎12-20‎.‎

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)