Role of Bifidobacterium infantis in the Treatment of Duodenal and Colon Inflammation in Induced Ulcerative Colitis

Main Article Content

Majida Al-Qayim
Ali Muhsin Al-Rudaini
Inam Badr Falih

Abstract





This study aimed to investigate the potential protective role of Bifidobacterium (B.) infantis in alleviating ‎‎induced duodenal and colon inflammation associated with ulcerative colitis (UC). Female albino Wister rats ‎‎(n=24) ‎were randomized into four experimental groups: Control Negative, acetic acid-induced colitis (AA colitis), ‎B. infantis-treated (Bifido), orally gavaged with 1 mL of reference strain ‎B. infantis at 108 CFU/mL for four weeks prior to the induction of colitis,‎ and Bifido+AA ‎colitis. Colitis was induced via ‎intrarectal administration of 4% AA solution‎. Seven days post-colitis induction, blood samples were ‎obtained to assess protein levels, and histopathological evaluations were conducted on duodenal and ‎colon tissues. ‎Additionally, immunohistochemical assessments for B-cell lymphoma 2‎ (Bcl-2) in colon and ‎myeloperoxidase (MPO) in duodenum ‎sections were performed‎. Results revealed that B. infantis treatment significantly elevated serum albumin and total ‎protein levels in the Bifido and Bifido+AA colitis groups, approximating those in the Control Negative group. Histopathological and morphological changes of duodenum in AA colitis revealed ulceration of the mucosal epithelium, submucosal inflammatory cellular infiltration, tissue depression resulting in villus atrophy, and crypt hyperplasia. Additionally, ‎colonic crypt gland atrophy and goblet cells depletion were observed. Most of these changes were ameliorated in the Bifido and Bifido+AA colitis groups. Immunohistochemical analysis displayed marked immunopositivity ‎ of Bcl-2 in colon and MPO in duodenum sections of the Bifido and Bifido+AA colitis groups, indicating the antiapoptotic and anti-inflammatory roles of B. infantis.  This study demonstrates that B. infantis exerts a protective effect against AA-induced UC by normalizing serum protein levels, ameliorating histopathological alterations, and ‎modulating apoptotic and inflammatory markers. These findings underscore B. infantis as a ‎promising therapeutic agent for UC and warrant further research to elucidate the underlying ‎molecular mechanisms.





Downloads

Download data is not yet available.

Article Details

How to Cite
Role of Bifidobacterium infantis in the Treatment of Duodenal and Colon Inflammation in Induced Ulcerative Colitis. (2022). The Iraqi Journal of Veterinary Medicine, 46(2), 73-81. https://doi.org/10.30539/ijvm.v46i2.1612
Section
Articles

How to Cite

Role of Bifidobacterium infantis in the Treatment of Duodenal and Colon Inflammation in Induced Ulcerative Colitis. (2022). The Iraqi Journal of Veterinary Medicine, 46(2), 73-81. https://doi.org/10.30539/ijvm.v46i2.1612

References

Din AU, Hassan A, Zhu Y, Zhang K, Wang Y, Li T, et al. Inhibitory effect of Bifidobacterium bifidum ATCC 29521 on colitis and its mechanism. J Nutr Biochem. 2020;79:108353. https://doi.org/10.1016/j.jnutbio.2020.108353

He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017;7:54. https://doi.org/10.1186/s13578-017-0183-1

Günter J, Wolint P, Bopp A, Steiger J, Cambria E, Hoerstrup SP, et al. Microtissues in cardiovascular medicine: regenerative potential based on a 3D microenvironment. Stem Cells Int. 2016;2016:9098523. https://doi.org/10.1155/2016/9098523

Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology. 2017;152(2):327-339. e4. https://doi.org/10.1053/j.gastro.2016.10.012

Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655-662. https://doi.org/10.1038/s41586-019-1237-9

Ryan FJ, Ahern AM, Fitzgerald RS, Laserna-Mendieta EJ, Power EM, Clooney AG, et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat. Commun. 2020;11(1):1512. https://doi.org/10.1038/s41467-020-15342-5

Montanari C, Parolisi S, Borghi E, Putignani L, Bassanini G, Zuvadelli J, et al. Dysbiosis, host metabolism, and non-communicable diseases: trialogue in the inborn errors of metabolism. Front Physiol. 2021; 12:716520. https://doi.org/10.3389/fphys.2021.716520

Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic influences of gut microbiota dysbiosis on inflammatory bowel disease. Front Physiol. 2021; 12:715506. https://doi.org/10.3389/fphys.2021.715506

Lee JH, O'Sullivan DJ. Genomic insights into Bifidobacteria. Microbiol Mol Biol Rev. 2010; 74(3):378-416. https://doi.org/10.1128/MMBR.00004-10

Modesto M, Watanabe K, Arita M, Satti M, Oki K, Sciavilla P, et al. Bifidobacterium jacchi sp. nov., isolated from the faeces of a baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol. 2019; 69(8):2477-2485. https://doi.org/10.1099/ijsem.0.003518

O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016; 7:925. https://doi.org/10.3389/fmicb.2016.00925

Taft DH, Liu J, Maldonado-Gomez MX, Akre S, Huda MN, Ahmad S, et al. Bifidobacterial dominance of the gut in early life and acquisition of antimicrobial resistance. mSphere. 2018; 3(5):e00441-18. https://doi.org/10.1128/mSphere.00441-18

Velema WA, Szymanski W, Feringa BL. Photopharmacology: beyond proof of principle. J Am Chem Soc. 2014;136(6):2178-2191. https://doi.org/10.1021/ja413063e

Wang W, Sun M, Zheng YL, Sun LY, Qu SQ. Effects of Bifidobacterium infantis on cytokine-induced neutrophil chemoattractant and insulin-like growth factor-1 in the ileum of rats with endotoxin injury. World J Gastroenterol. 2019;25(23): 2924-2934. https://doi.org/10.3748/wjg.v25.i23.2924

Xu B, Liang S, Zhao J, Li X, Guo J, Xin B, et al. Bifidobacterium animalis subsp. lactis XLTG11 improves antibiotic-related diarrhea by alleviating inflammation, enhancing intestinal barrier function and regulating intestinal flora. Food Funct. 2022;13(11):6404-6418. https://doi.org/10.1039/D1FO04305F

Zhou L, Xie Y, Li Y. Bifidobacterium infantis promotes Foxp3 expression in colon cells via PD-L1-mediated inhibition of the PI3K-Akt-mTOR signaling pathway. Front Immunol. 2022;13:871705. https://doi.org/10.3389/fimmu.2022.871705

Choudhary S, Keshavarzian A, Yong S, Wade M, Bocckino S, Day BJ, Banan A. Novel antioxidants zolimid and AEOL11201 ameliorate colitis in rats. Dig Dis Sci. 2001;46(10):2222-2230. https://doi.org/10.1023/A:1011975218006

Bakheet NZ, Al-Qayim MA, Falih IB. Intestinal anti-inflammatory improvement with fenugreek seeds as a prebiotic and synbiotic with Lactobacillus acidophilus in rats experimentally infected with Escherichia coli. Iraqi J. Vet. Med. 2020;44(2):1-4

https://doi.org/10.30539/ijvm.v44i2.984.

Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods. 2020;75:104248. https://doi.org/10.1016/j.jff.2020.104248

Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. https://doi.org/10.1128/MMBR.00036-17

Xue L, He J, Gao N, Lu X, Li M, Wu X, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 2017;7:45176. https://doi.org/10.1038/srep45176

Wang M, Yang C, Wang QY, Li JZ, Li YL, Ding XQ, et al. The growth performance, intestinal digestive and absorptive capabilities in piglets with different lengths of small intestines. Animal. 2020;14(6):1196-1203. https://doi.org/10.1017/S175173111900288X

Wang Z, Wang L, Chen Z, Ma X, Yang X, Zhang J, et al. In vitro evaluation of swine-derived Lactobacillus reuteri: probiotic properties and effects on intestinal porcine epithelial cells challenged with enterotoxigenic Escherichia coli K88. J Microbiol Biotechnol. 2016;26(6):1018-1025. https://doi.org/10.4014/jmb.1510.10089

Zuo L, Yuan KT, Yu L, Meng QH, Chung PC, Yang DH. Bifidobacterium infantis attenuates colitis by regulating T cell subset responses. World J Gastroenterol. 2014;20(48):18316-18329. https://doi.org/10.3748/wjg.v20.i48.18316

Miller MA, Zachary JF. Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. Pathologic Basis of Veterinary Disease. 2017; 2-43.e19. https://doi.org/10.1016/B978-0-323-35775-3.00001-1

Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(2):a008722. https://doi.org/10.1101/cshperspect.a008722

Guo N, Gao J. Harmol alleviates dimethylhydrazine induced colon cancer by downregulating Bcl2/IL-6/TNF-α expression in association with p53 mediated apoptosis. Eur J Inflam. 2022;20:1-14. https://doi.org/10.1177/1721727X221110044

Oliaei R, Keshtmand Z, Shabani R. The effect of Lactobacillus casei and Bacillus coagulans probiotics on liver damage induced by silver nanoparticles and expression of Bax, Bcl2 and Caspase 3 genes in male rats. Eur J Transl Myol. 2022;33(1). https://doi.org/10.4081/ejtm.2022.10673

Saber A, Alipour B, Faghfoori Z, Yari Khosroushahi A. Cellular and molecular effects of yeast probiotics on cancer. Crit Rev Microbiol. 2017;43(1):96–115. https://doi.org/10.1080/1040841X.2016.1179622

Faghfoori Z, Faghfoori MH, Saber A, Izadi A, Yari Khosroushahi A. Anticancer effects of bifidobacteria on colon cancer cell lines. Cancer Cell Int. 2021;21(1):258. https://doi.org/10.1186/s12935-021-01971-3

Wen YA, Li X, Goretsky T, Weiss HL, Barrett TA, Gao T. Loss of PHLPP protects against colitis by inhibiting intestinal epithelial cell apoptosis. Biochim Biophys Acta. 2015;1852(10 Pt A):2013-23. https://doi.org/10.1016/j.bbadis.2015.07.012

Dashtbanei S, Keshtmand Z. A Mixture of multi-strain probiotics (Lactobacillus Rhamnosus, Lactobacillus Helveticus, and Lactobacillus Casei) had anti-inflammatory, anti-apoptotic, and anti-oxidative effects in oxidative injuries induced by cadmium in small intestine and lung. Probiotics Antimicro Proteins. 2023;15(2):226-238. https://doi.org/10.1007/s12602-022-09946-0

Mohammadi G, Dargahi L, Naserpour T, Mirzanejad Y, Alizadeh SA, Peymani A, et al. Probiotic mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 attenuates hippocampal apoptosis induced by lipopolysaccharide in rats. Int Microbiol. 2019;22(3):317-323. https://doi.org/10.1007/s10123-018-00051-3

Mintál K, Tóth A, Hormay E, Kovács A, László K, Bufa A, et al. Novel probiotic treatment of autism spectrum disorder associated social behavioral symptoms in two rodent models. Sci Rep. 2022;12(1):5399. https://doi.org/10.1038/s41598-022-09350-2

Similar Articles

You may also start an advanced similarity search for this article.