Histomorphometric and Histopathological Alterations of Rat Testis Following Exposure to Hydrogen ‎Peroxide: Protective Role of Resveratrol Supplement

Main Article Content

Jasim M Abdulla
Baraa N Al-Okaily

Abstract





Resveratrol (RS) is widely used in medical fields as an antioxidant. Current research investigated ‎the protective role of RS supplement on histomorphometric and histopathological alterations in ‎testes were caused by hydrogen peroxide (H2O2) of rats as an animal model. Thirty-two adult ‎rats were utilized in this study, divided randomly into 4 equal groups as follows. The group C ‎was given tap water only and served as control, the 2nd group (G1) was given 0.5% of H2O2 of ‎tap water, the 3rd group (G2) was given tap water containing 0.5% of H2O2 and intubated RS ‎supplement at 87 mg/kg BW, and 4th group intubated RS supplement 87 mg/kg BW. after 56 ‎days of treatment, rats were euthanized, dissected then, specimens of testes tissue were collected ‎for histomorphometric and histopathological evaluation. Our results showed that administration ‎of H2O2 caused a significant histomorphometric with histopathological changes in the form of a ‎thickness of fibrous tunica albuginea, disarrangement of germ cells, necrosis of spermatogonia, ‎edema, and loss of sperms as compared to other groups. Meanwhile, these histological alterations ‎were partially attenuated in the G2 group that intubated resveratrol. Thus, the current study ‎concluded that resveratrol may have therapeutic value in the treatment of induced testicular injury ‎by H2O2 due to its antioxidant activity and attenuation of harmful effects of oxidative ‎stress through a mechanism that should be elucidated in future studies.





Downloads

Download data is not yet available.

Article Details

How to Cite
Histomorphometric and Histopathological Alterations of Rat Testis Following Exposure to Hydrogen ‎Peroxide: Protective Role of Resveratrol Supplement. (2022). The Iraqi Journal of Veterinary Medicine, 46(1), 17-23. https://doi.org/10.30539/ijvm.v46i1.1313
Section
Articles

How to Cite

Histomorphometric and Histopathological Alterations of Rat Testis Following Exposure to Hydrogen ‎Peroxide: Protective Role of Resveratrol Supplement. (2022). The Iraqi Journal of Veterinary Medicine, 46(1), 17-23. https://doi.org/10.30539/ijvm.v46i1.1313

References

Bhowmik D, Vel SD, Rajalakshmi AN, Kumar KPS. Stress -sign, symptoms, pathology and its managements. Elixir Pharmacy. 2014; 70: ‎‎24036-24042.‎

Jacobs CM. Ineffective-leader-induced occupational stress. SAGE Open. 2019; 9(2):2158244019855858.‎ https://doi.org/10.1177/2158244019855858

Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Ind J Clin Biochem. 2015; 30(1):11-26. https://doi.org/10.1007/s12291-014-0446-0

Nahar M, Hasan W, Rajak R, Jat D. Oxidative stress and antioxidant: an overview. IJARR. 2017; 2(9):110-119.‎

Rao M, Zhao XL, Yang J, Hu SF, Lei H, Xia W. Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical ‎markers, and oxidative stress in men. Asian J Androl. 2015; 17:668–75.‎ https://doi.org/10.4103/1008-682X.146967

Rojas JL, Fahiel C, Socorro RM. Stress and cell death in testicular cells. Andrology (Los Angel) 6: 1000183.

Zou P, Wang X, Yang W, Liu C, Chen Q, Yang H, Zhou N. Mechanisms of stress-induced spermatogenesis impairment in male rats following ‎unpredictable chronic mild stress (uCMS). Int J Mol Sci. 2019; 20(18):4470.‎ https://doi.org/10.3390/ijms20184470

Nauseef WM. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochimica et Biophysica ‎Acta (BBA)-General Subjects. 2014; 1840(2):757-767.‎ https://doi.org/10.1016/j.bbagen.2013.04.040

Di Marzo N,Chisci E, Giovannoni R. The role of hydrogen peroxide in redox-dependent signaling: Homeostatic and pathological ‎responses in mammalian cells. Cells.2018; 7(10): 156.‎ https://doi.org/10.3390/cells7100156

Collin F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019; 20: ‎‎2407.‎ https://doi.org/10.3390/ijms20102407

Schilter D. Thiol oxidation: a slippery slope. Nat Rev Chem. 2017; 1(2): 1-1.‎ https://doi.org/10.1038/s41570-016-0013

Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014; 32(1):1–17. ‎https://doi.org/10.5534/wjmh.2014.32.1.1

De Lamirande E, O'Flaherty C. Sperm activation: role of reactive Biochim Biophys Acta. 2008;1784(1):106-115.‎ https://doi.org/10.1016/j.bbapap.2007.08.024

Subramanian V, Ravichandran A, Thiagarajan N, Govindarajan M, Dhandayuthapani S, Suresh S. Seminal reactive oxygen species and ‎total antioxidant capacity: Correlations with sperm parameters and impact on male infertility. Cli Exp Reprod Med. 2018; 45(2): ‎‎88–93.‎ https://doi.org/10.5653/cerm.2018.45.2.88

Ni K, Steger K, Yang H, Wang H, Hu K, Zhang T, Chen B. A comprehensive investigation of sperm DNA damage and oxidative stress injury ‎in infertile patients with subclinical, normozoospermic, and astheno/oligozoospermic clinical varicocoele. Andrology. 2016; ‎‎4(5):816-824.‎ https://doi.org/10.1111/andr.12210

Nowicka-Bauer K, Nixon B. Molecular changes induced by oxidative stress that impair human sperm motility. Antioxidants. 2020; ‎‎9(2):134. ‎ https://doi.org/10.3390/antiox9020134

Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant ‎Mechanism. In (Ed.), Antioxidants. 2019. IntechOpen.‎

Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M. Resveratrol: A double-edged sword in health benefits. Biomedicines. 2018; ‎‎6(3):91.‎ https://doi.org/10.3390/biomedicines6030091

Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA. Resveratrol and related stilbenes: Their anti-aging and anti-angiogenic ‎properties. Food Chem Toxicol. 2013; 61:112-120. ‎ https://doi.org/10.1016/j.fct.2013.03.038

Rao YL, Ganaraja B, Joy T, Pai MM, Ullal SD, Murlimanju BV. Neuroprotective effects of resveratrol in Alzheimer’s disease. Front. Biosci. ‎‎(Elite Ed). 2020; 12: 139–149.‎ https://doi.org/10.2741/e863

Kim J, Lee H, Lee K. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. JNC. 2010; 12(6):1415-1430.‎ https://doi.org/10.1111/j.1471-4159.2009.06562.x

Yao L, Wan J, Li H, Ding J, Wang Y, Wang X, Li M. Resveratrol relieves gestational diabetes mellitus in mice through activating AMPK. ‎Reprod Biol Endocrinol. 2015; 13:1-7.‎ https://doi.org/10.1186/s12958-015-0114-0

Khayoon HA, Al-Rekabi FMK. Cytotoxic effect of resveratrol on colorectal cancer cell line. Iraqi J. Vet. Med. 2020; 44(1):68-74.‎ https://doi.org/10.30539/ijvm.v44i1.939

Alghetaa H, Mohammed A, Zhou J, Singh N, Nagarkatti M, Nagarkatti P. Resveratrol-mediated attenuation of superantigen-driven acute ‎respiratory distress syndrome is mediated by microbiota in the lungs and gut. Pharmacol Res. 2021; 167:105548. https://doi.org/10.1016/j.phrs.2021.105548‎

Nowfel AJ, Al-Okaily BN. Oxidative stress: Role of Eruca sativa extract on male reproduction in rats. Adv. Anim. Vet. Sci. 2017; 5(1): 39-‎‎46.‎ https://doi.org/10.14737/journal.aavs/2017/5.1.39.46

Van Pelt LF. Ketamine and xylazine for surgical anesthesia in rats. J Am Vet Med Assoc. 1977; 171(9):842-844.‎

Suvarna KS, Layton C, Bancroft JD. Bancroft's theory and practice of histological techniques E-Book. 2018; Elsevier Health Sciences.‎

Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol Reprod Dev. ‎‎2015; 82(7-8):518-529.‎ https://doi.org/10.1002/mrd.22489

Snedecor GW, Cochran WG. Statistical methods. The Iowa state University Press. 6th ed. 1973; 238-248P.‎

Gautam DK, Misro MM, Chaki SP, Sehgal N. H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative ‎stress and apoptosis. Apoptosis. 2006; 11(1): 39-46.‎ https://doi.org/10.1007/s10495-005-3087-1

Rahim SM, Taha EM, Mubark ZM, Aziz SS, Simon KD, Mazlan AG. Protective effect of Cymbopogon citratus on hydrogen peroxide-‎induced oxidative stress in the reproductive system of male rats. Syst Biol Reprod Med. 2013; 59(6):329-336.‎ https://doi.org/10.3109/19396368.2013.827268

Alwan MS, Al-Okialy BN. Role of alpha lipoic acid in ameliorating the histological alterations of pituitary-testicular axis–induced by ‎hydrogen peroxide in rats. Al-Anbar J Vet Sci. 2021; 13(2): 125‎–‎136.‎ https://doi.org/10.37940/AJVS.2020.13.2.12

Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The Impact of oxidative stress on testicular function and the role of ‎antioxidants in improving it: A review. J Clin Diagn Res. 2017; 11(5): IE01–IE05. https://doi.org/10.7860/JCDR/2017/23927.9886

Baskaran S, Finelli R, Agarwal A, Henkel R. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia. 2021; ‎‎53(1):e13577.‎ https://doi.org/10.1111/and.13577

Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev. 2008; 1(1):15–24. ‎ https://doi.org/10.4161/oxim.1.1.6843

Koppenol WH, Hider RH. Iron and redox cycling. Do’s and don’ts. Free Radic Biol Med. 133: 3–10. ‎https://doi.org/10.1016/j.freeradbiomed.2018.09.022

Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ‎ferroptosis. Oxid Med Cell Longev. 2019; 2019:5080843.‎ https://doi.org/10.1155/2019/5080843

Ganie SA, Haq E, Hamid A, Masood A, Zargar MA. Long dose exposure of hydrogen peroxide (H2O2) in albino rats and effect of ‎Podophyllum hexandrum on oxidative stress. Eur Rev Med Pharmacol Sci. 2011; 15:906–915.‎

Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020; 21(2): 85–100.‎ https://doi.org/10.1038/s41580-019-0173-8

Vaithinathan S, Saradha B, Mathur PP. Methoxychlor induces apoptosis via mitochondria- and FasL-mediated pathways in adult rat ‎testis. Chem Biol Interact. 2010; 185(2):110‎–‎118.‎ https://doi.org/10.1016/j.cbi.2010.03.014

Huang C, Lin MZ, Cheng D, Braet F, Pollock CA, Chen XM. KCa3.1 mediates dysfunction of tubular autophagy in diabetic kidneys via ‎PI3k/Akt/mTOR signaling pathways. Sci Rep. 2016; 6:23884. ‎https://doi.org/10.1038/srep23884

Sato S, Kataoka S, Kimura A, Mukai Y. Azuki bean (Vigna angularis) extract reduces oxidative stress and stimulates autophagy in the ‎kidneys of streptozotocin-induced early diabetic rats. Can J Physiol Pharmacol. 2016; 94(12):1298–1303.‎ https://doi.org/10.1139/cjpp-2015-0540

Zhang L, Ding K, Wang HD, Wu Y, Xu J. Traumatic brain injury-induced neuronal apoptosis is reduced through modulation of PI3K and ‎autophagy pathways in mouse by FTY720. Cell Mol Neurobiol. 2016; 36(1):131–42.‎ https://doi.org/10.1007/s10571-015-0227-1

Zhao Y, Song W, Wang Z, Wang Z, Jin X, Xu J, et al. Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: Role of Akt-‎mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biol. 2018;14: 609–617.‎ https://doi.org/10.1016/j.redox.2017.11.007

Sadeghi N, Erfani-Majd N, Tavalaee M, Tabandeh MR, Drevet JR, Nasr-Esfahani MH. Signs of ROS-associated autophagy in testis and ‎sperm in a rat model of varicocele. Oxid Med Cell Longev. 2020; 2020:5140383.‎ https://doi.org/10.1155/2020/5140383

Tian Y, Song W, Xu D, Chen X, Li X, Zhao Y. Autophagy induced by ROS aggravates testis oxidative damage in diabetes via breaking the feed ‎forward loop linking p62 and Nrf2. Oxid Med Cell Longev. 2020; 2020:7156579.‎ https://doi.org/10.1155/2020/7156579

Yi WEI, Xiang-Liang T, Yu Z, Bin L, Lian-Ju S, Chun-Lan L, et al. DEHP exposure destroys blood-testis barrier (BTB) integrity of immature ‎testes through excessive ROS-mediated autophagy. Genes Dis. 2018; 5(3):263‎–‎274.‎ https://doi.org/10.1016/j.gendis.2018.06.004

Yuluğ E, Türedi S, Alver A, Türedi S, Kahraman C. Effects of resveratrol on methotrexate-induced testicular damage in rats. Sci. World. ‎J. 2013:489659.‎ https://doi.org/10.1155/2013/489659

Sener T, Atasoy B, Cevik O, Kaya OTC, Centinel S, Degerli A, et al. Effects of resveratrol against scattered radiation-induced testicular ‎damage in rats. Turkish J Biochem. 2021; 46(4):425-433.‎ https://doi.org/10.1515/tjb-2020-0320

Zeng Y, Zhou L, Chen Q, Li Y, Shao Y, Ren W, et al. Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon ‎cancer cells. Oncol Rep. 2017; 38(1): 456‎–‎464.‎ https://doi.org/10.3892/or.2017.5662

Shati AA. Resveratrol improves sperm parameter and testicular apoptosis in cisplatin-treated rats: Effects on ERK1/2, JNK, and Akt ‎pathways. Syst Biol Reprod Med. 2019; 65(3):236‎–‎249.‎ https://doi.org/10.1080/19396368.2018.1541114

Shi GJ, Zheng J, Han XX, Jaing Y, Li Z, Wu J, et al. Lycium barbarum polysaccharide attenuates diabetic testicular dysfunction via inhibition ‎of the PI3K/Akt pathway-mediated abnormal autophagy in male mice. Cell Tissue Res. 2018; 374(3):653–666.‎ https://doi.org/10.1007/s00441-018-2891-1

Khanzadeh T, Hagh MF, Talebi M, Yousefi B, Azimi A, Hossein Pour Feizi, A, et al. Investigation of BAX and BCL2 expression and ‎apoptosis in a resveratrol- and prednisolone-treated human T-ALL cell line, CCRF-CEM. Blood Res. 2018; 53(1): 53–60.‎ https://doi.org/10.5045/br.2018.53.1.53

Gao P, Li N, Ji K, Wang Y, Xu C, Liu Y, et al. Resveratrol targets TyrRS acetylation to protect against radiation-induced damage. The FASEB ‎J. 2019; 33(7):8083–8093.‎‎ https://doi.org/10.1096/fj.201802474RR

Similar Articles

You may also start an advanced similarity search for this article.