Evaluation of two biological matrices for repairing of ventral hernia in bucks

Main Article Content

A. K. Mahdi
Ahmed H. F. AL-Bayati

Abstract

  The aim of this study was to estimate the changes in ventral hernia repairing in Iraqi bucks by using two biological matrixes derived from bovine (pericardium and urinary bladder matrix) through histopathological examination. All bucks right lower flank awas prepared surgically, sedation were done by using (2% Xylazine hydrochloride) at a dose of 0.2mg/kg intramuscular, and surgical site anesthetized through an inverted (L) shape local infiltration technique using lidocaine hydrochloride (2%) at a dose of 8mg/kg. Ventral abdominal hernias were induced in (24) bucks through elliptical resection of abdominal muscles to made hernia ring (6-8cm) with avoiding peritoneum perforation. After 30 days of operation bucks were divided into two equal groups. cellular Bovine pericardium group and cellular urinary bladder matrix group. In two groups hernias were treated with only replacement of acellular bovine pericardium and cellular urinary bladder matrix respectively which fixed with interrupted horizontal mattress 2cm far from hernia ring by Polypropylene (No.1) suture material. Histopathological biopsies were taken at 2nd, 8th and 16th week post treatment (4 bucks\ period). Both groups’ successes in reconstruction of large hernia in bucks through prevent recurrent or others post-operative complications.  In addition the histopathological examination showed that the acellular urinary bladder matrix  superior than acellular bovine pericardium matrix  in enhance healing based on acellular urinary bladder matrix  role in augment early initiation of inflammatory cells infiltration, fibroblast proliferation and marked collagen deposition, in addition to its early degradation, incorporation and remodeling.

Downloads

Download data is not yet available.

Article Details

How to Cite
Evaluation of two biological matrices for repairing of ventral hernia in bucks. (2019). The Iraqi Journal of Veterinary Medicine, 42(2), 21-32. https://doi.org/10.30539/iraqijvm.v42i2.282
Section
Articles

How to Cite

Evaluation of two biological matrices for repairing of ventral hernia in bucks. (2019). The Iraqi Journal of Veterinary Medicine, 42(2), 21-32. https://doi.org/10.30539/iraqijvm.v42i2.282

References

Jettennavar, P.S., Kalmath, G.P. and Anilkumar, M.C. (2010). Ventral Abdominal Hernia in a Goat. J. Veterinary World, 3(2):93.

Das, B.C., Nath, B.K.; Pallab, M.S.; Mannan, A. and Biswas, D. (2012). Successful management of ventral abdominal hernia in goat: a case report .International J. of Natural Sci. 2(2):60-62 . https://doi.org/10.3329/ijns.v2i2.11387

Cavallaro, A.; Lo Menzo, E.; Di Vita, M.; Zanghì, A.; Cavallaro, V. and Veroux, P.F. (2010).Use of biological meshes for abdominal wall reconstruction in highly contaminated fields. World J. Gastroenterol., 16:1928-1933. https://doi.org/10.3748/wjg.v16.i15.1928

Abdin-Bey, M.R. and Ramadan, R.O. (2001). Retrospective Study of Hernias in Goats. Scientific J. of King Faisal University (Basic and Applied Sciences). 2(1):77-88.

Song, Z.; Peng, Z.; Liu, Z. and Yang, J. (2013). Reconstruction of abdominal wall musculofascial defects with small intestinal submucosa scaffolds seeded with tenocytes in rats. Tissue Engineering, Part A, 19(13-14):1543–1553. https://doi.org/10.1089/ten.tea.2011.0748

Jacob, B.P.; Hogle, N.J.; Durak, E.; Kim, T. and Fowler, D.L. (2007). Tissue ingrowth and bowel adhesion formation in animals comparative study polypropelene versus proceed versus paroete composite. Surgical Endoscopy, 3(1):23-29.

Eberli, D.; Atala, A.; Yoo, J.J. (2011). One and four layer acellular bladder matrix for fascial tissue reconstruction. J. of Materials Science., 22(3):741-751. https://doi.org/10.1007/s10856-011-4242-6

Rosen, M.J. (2010). Biological mesh for abdominal wall reconstruction; a critical appraisal. Am. Surg., 76(1):1-6. https://doi.org/10.1177/000313481007600101

Freytes, D.O; Tullius, R.S. and Badylak, S.F. (2006). Effect of storage upon material properties of lyophilized porcine extracellular matrix derived from the urinary bladder. J. of Biomedical Materials Res. Part B: Applied Biomaterials, 78(2):327-333. https://doi.org/10.1002/jbm.b.30491

Bancroft, J.D. (2008). Theory and Practice of histological technique. 6th ed, Churchill Livingstone Elsevier, pp:8.

Valentin, JE. Badylak, JS.; McCabe, GP. and Badylak, SF. (2006). Extracellular matrix bioscafolds for orthopaedic applications. A

comparative histological study. J. Bone Joint Surg. Am., 88(12):2673–2686. https://doi.org/10.2106/JBJS.E.01008

Monteiro, J.A.; Delossantos, A.I.; Rodriguez, N.L.; Michael, P.P., Franz, G. and Wagnerm, C.H.T. (2013). Porcine incisional hernia model: Evaluation of biologically derived intact extracellular matrix repairs. J of Tissue Eng., 4:1-7. https://doi.org/10.1177/2041731413508771

Holihan, J.L.; Nguyen, D.H.; Nguyen, M.T.; Mo, J.; Kao, L.S. and Liang, M.K. (2015). Mesh Location in open ventral hernia repair: A systematic review and network meta-analysis. World J. Surg., 40(1):89-99. https://doi.org/10.1007/s00268-015-3252-9

.Gurrado, A.; Franco, I.F.; Lissidini, G.; Greco, G.; De Fazio, M.; Pasculli, A. (2014). Impact of pericardium bovine patch (Tutomesh®) on incisional hernia treatment in contaminated or potentially contaminated fields: retrospective comparative study. Hernia, 19(2):259-266. https://doi.org/10.1007/s10029-014-1228-6

Al-Asadi, R.N. (2005). A comparative study of three surgical techniques for reconstruction of experimentally induced large ventral hernia in goats. Ph.D. Thesis in Veterinary Medicine. Univ. of Baghdad, Baghdad-Iraq.

Hummadi, S.K. (2011). Hernioplasty of experimentally induced ventrolateral hernia in bucks using silk suture versus polypropelen suture. MSc. Thesis in Veterinary Medicine. Univ. of Baghdad, Baghdad-Iraq.

Bendavid, R. and Kux, M. (2001). Seromas In abdominal wall hernias: Principles and management. Edited by Bendavid, R.; Abrahamson, J.; Arregui, M.E.; Flament, J.B.; Phillips, E.H. New York: Springer, Pp:753-756. https://doi.org/10.1007/978-1-4419-8574-3

Schessel, S.; Ralph, G. and Ran, K. (2002). The management of postoperative disrupted abdominal wall. Am. J. Surg., 184(3): 263-268. https://doi.org/10.1016/S0002-9610(02)00935-2

Westphalen, A.P.; Araújo, A.C.F;Zacharias, P.; Rodrigues, E.S.; Fracaro, G.B. and Filho, G.D. (2015). Repair of large incisional hernias. To drain or not to drain.Randomized clinical trial. Acta. Cir. Bras., 30(12): 31-38. https://doi.org/10.1590/S0102-865020150120000009

Cole, W.C.; Balent, E.M.; Masella, P.C.; Kajiura, L.N.; Matsumoto, K.W. and Pierce, L.M. (2015). An experimental comparison of the effects of bacterial colonization on biologic and synthetic meshes. Hernia, 19(2):197–205. https://doi.org/10.1007/s10029-014-1290-0

Köckerling, F.; Alam, N.N.; Narang, S.K.; Daniels, L.R. and Smart, N.J. (2015). Biological Meshes for Inguinal Hernia Repair–Review of the Literature. Front.Surg.,(2):48-54. https://doi.org/10.3389/fsurg.2015.00048

.Brennan, E.P.; Reing, J.; Chew, D.; Myers-Irvin, J. M.; Young, E.J. and Badylak, S.F. (2006). Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Engineering, 12:2949-2955. https://doi.org/10.1089/ten.2006.12.2949

Sasse, K.C.; Warner, D.L.; Ackerman, E. and Brandt, J. (2016). Hiatal hernia repair with novel biological graft reinforcement. JSLS., 20(2): e2016.00016. https://doi.org/10.4293/JSLS.2016.00016

Abouelnasr, K.S.; Zaghloul, A.E. and Karrouf, G.I. (2014). Comparative evaluation of glycerolized bovine pericardium implant with prolene mesh for closure of large abdominal wall defects in dogs. Iranian J. of Veterinary Research., 15(3) 211-217.

Hafeez, Y.M.; Zuki, A.B.Z.; Yusof, N.; Asnah, H.; Loqman, M.Y. and Noordin, M.M. (2005). Effect of freeze-drying and gamma irradiation

on biomechanical properties of bovine pericardium. Cell and tissue banking.6(2): 85-89.

Eva, G.; Babuci, S.; Tica, C.; Petrovici, V.; Nacu, V.; Ionescu, C. and Negru, I. (2017). Comparative cellular local response in abdominal

defect plastic surgery with bovine pericardium and bovine fascia preserved in formaldehyde in experimental rabbits. ARS Medica Tomitana, 2(23):83-93. https://doi.org/10.1515/arsm-2017-0016

Remlinger, N.T.; Gilbert, T.W.; Yoshida, M.; Guest, B.N.; Hashizume, R. and Weaver, M.L. (2013). Urinary bladder matrix promotes site

appropriate tissue formation following right ventricle outflow tract repair .J of Organogenessis, 9(3):149–160. https://doi.org/10.4161/org.25394

Di Vita, G.; Milano, S.; Frazzetta, M.; Patti, R.; Palazzolo, V. and Barbera, C. (2000). Tension-free hernia repair is associated an increase in inflammatory response markers against the mesh. Am J Surg., 180: 203-207. https://doi.org/10.1016/S0002-9610(00)00445-1

Badylak, S.F.; Freytes, D.O. and Gilbert, T.W. (2009). Extracellular matrix as a biological scaffold material: structure and function. Acta.

Biomater., 5:1-13. 321-342. https://doi.org/10.1016/j.actbio.2008.09.013

Record, R.D.; Hillegonds, D.; Simmons, C.; Tullius, R.; Rickey, F.; Elmore, D. and Badylak, S.F. (2001). In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials, :2653–2659. https://doi.org/10.1016/S0142-9612(01)00007-2

Gilbert, T.W.; Stewart-Akers, A.M.; Simmons-Byrd, A. and Badylak, S.F. (2007). Degradation and remodeling of small intestinal sub mucosa in canine achilles tendon repair. J. Bone Joint Surg. Am., 89:621-630. https://doi.org/10.2106/JBJS.E.00742

Li, F.; Li, W.; Johnson, S.; Ingram, D.; Yoder, M. and Badylak, S. (2004). Low-molecular-weight peptides derived from extracellular matrix as chemo attractants for primary endothelial cells. Endothelium, 11: 199-206. https://doi.org/10.1080/10623320490512390

Anderson, JM.; Cook, G.; Costerton, B.; Hanson, SR.; Pettersen, AH. And Jacobsen, N. (2004). Host Reactions to Biomaterials and Their Evaluation. 2nd ed, Chapter four .Biomaterials Sci., Elsevier Inc, Pp: 26-87. 35. Anderson, J.M.; Rodriguez, A. and Change, D.T. (2008). Fogin Body Reaction to Biomaterials. Semin Immunol., 20(2): 86–100.

.Anderson, J.M.; Rodriguez, A. and Change, D.T. (2008). Fogin Body Reaction to Biomaterials. Semin Immunol., 20(2): 86–100. https://doi.org/10.1016/j.smim.2007.11.004

.Brown, B.; Lindberg, K.; Reing, J.; Beer Stolz, B. and Badylak, S.F. (2006). The basement membrane component of biologic scaffolds derived from extracellular matrix .Tissue Engineering. 12(3): 519-526. https://doi.org/10.1089/ten.2006.12.519

.Gould, L.J. (2016). Topical Collagenbased biomaterials for chronic wounds: Rationale and clinical application. Advances in Wound Care. 5(1):19-31.https://doi.org/10.1089/wound.2014.0595

Mendoza-Novelo, B.; Alvarado-Castro, D.I.; Mata-Mata, J. L.; CauichRodríguez, J. V.; Vega-González, A. and Jorge-Herrero, E. (2016) Stability and mechanical evaluation of bovine pericardium cross-linked with polyurethane prepolymer in aqueous medium. Materials Science and Engineering: C., 33(4):2392-2398. https://doi.org/10.1016/j.msec.2013.02.001

.Ambra, L.; Berti, S.; Feleppa C.; Magistrelli, P.; Bonfante, P. and Falco, E. (2012). Use of bovine pericardium graft for abdominal wall reconstruction in contaminated fields. World J. Gastrointest. Surg., 171:174-176. https://doi.org/10.4240/wjgs.v4.i7.171

.Hynes R. O. (2009). The extracellular matrix: not just pretty fibrils. Science, 326:1216-1219. https://doi.org/10.1126/science.1176009

Egeblad, M.; Rasch, MG. and Weaver, VM. (2010). Dynamic interplaybetween the collagen scaffold and tumor evolution. Cell Biol., 22(5):697-706. https://doi.org/10.1016/j.ceb.2010.08.015

Similar Articles

You may also start an advanced similarity search for this article.