Correlation bCorrelation between the prevalence of E.coli O157:H7 and the physic -chemical characetween the prevalence of E.coli O157:H7 and the physic -chemical characteristics of the soil on a dairy farm reared under field conditions in Baghdad province Taif N. H. Mustafa and Zuhair A. Mohammed
Main Article Content
Abstract
This study was designed to investigate the correlation of various stress factors (PH, moisture contents, temp., and soil texture) on the ability of E.coli OI57:H7 to persist on/in soil on a dairy farm reared under field conditions at the college of Agriculture /University of Bagdad. The prevalence of E. coli O157:H7 in soil samples was determined for the period January to June 2012. The surface kinetics of E.coli O157:H7 onto the soil (surface kinetics), were theoretically achieved by dividing the farm into 3 zones starting from the fens (Z1),5m, and 10 m (Z5, and Z10, respectively) from the farm in three direction (right, left and rear of the farm) . While the depth kinetics were achieved by taking soil samples from the surface (D0), and at depths of 5, and 10 cm (D5, and D10 respectively) from each zone in the three directions. Nine soil samples (200g) were collected in plastic bags for each distance of 1, 5, and 10m from the farm for each depth of zero (surface), 5 and 10 cm at weekly basis. Sub sample (100g) was made for physicochemical assays. The other subsample was analyzed for E. coli OI57:H7. In conclusion, the physico-chemical characteristics of the soil examined, PH, moisture %, sand%, and clay % showed either no consistent or weak correlations with the prevalence of E.coli O157:H7 at the dairy farm reared under field conditions. The prevalence of E. coli O157:H7 found in this study are far greater than what would likely be found on a dairy farm in other countries; this is a critically important fact considering that, under natural conditions, even a low level of contamination of E. coli O157:H7 with a low infective dose could present a human health hazard.
Downloads
Article Details
How to Cite
References
Mankin, K. R.; Wang, L.; Hutchinson, S. L.
and Marchin, G. L. (2007). Escherichia coli
sorption to sand and silt loam soil. Trans. Am.
Soc. Agric. Biol. Eng., 50(4): 1159-1165.
Nicholson, F. A.; Groves, S. J. and Chambers,
B. J. (2005). Pathogen survival during
livestock manure storage and following land
application. Bioresour. Technol., 96:135–143.
Berry, E. D. and Miller, D. N. (2005). Cattle
feedlot soil moisture and manure content and
its Impact on Escherichia coli O157. J.
Environ. Qual., 34:656–663.
Fremaux, B.; Combaret, C. P.; Delignette, M.
L.; Mallen, B.; Dothal, M.; Gleizal, A. and
Vernozy, C. (2008). Persistence of Shiga
toxin-producing Escherichia coli O26 in
various manure-amended soil types. J. Appl.
Microb., 104(1): 296-304.
Islam, M.; Doyle, M.P.; Phatak, S.C.; Millner,
P. and Jiang, X. (2004). Persistence of
enterohemorrhagic Escherichia coli O157:H7
in soil and on leaf lettuce and parsley grown
in fields treated with contaminated manure
composts or irrigation water. J. Food Prot., 67:
-1370.
Jamieson, R. C.; Gordon, R. J.; Sharples, K.
E.; Stratton, G.W. and Madani, A. (2002).
Movement and persistence of fecal bacteria in
agricultural soils and subsurface drainage
water: A review. Canadian Biosystems
Engineering, 44: 11-19.
Jin, Y., and Flury M. (2002), Fate and
transport of viruses in porous media, Adv.
Agron., 77: 39 – 102.
Pachepsky, Y. A.; Guber, A. K.; Shelton, D.
R. and McCarty, G. W. (2009). Size
distributions of manure particles released
under simulated rainfall. J. Environ. Manage.
:1365–1369.
Pang, L. (2009). Microbial removal rates in
subsurface media estimated from published
studies of field experiments and large intact
soil cores. J. Environ. Qual., 38: 1531-1559.
Sen, T. K. and Khilar, K.C. (2006). Review
on subsurface colloids and colloid associated
contaminant transport in saturated porous
media. Adv. Colloid Interface. Sci., 119:71–
Tufenkji, N.; Dixon, D. R.; Considine, R. and
Drummond, C. J. (2006). Multiscale
Cryptosporidium/sand interactions in water
treatment. Water Res., 40:3315–333.
Unc, A. and Goss, M. J. (2004). Transport of
bacteria from manure and protection of water
resources. Appl. Soil Ecol., 25:1–18.
Strachan, N. J.; Dunn, G. M.; Locking, M. E.;
Reid, T. M. and Ogden, I. D. (2006)
Escherichia coli O157: burger bug or
environmental pathogen. Int. J. Food
Microbiol., 112:129 – 137.
Jiang, X.; Morgan, J. A. W. and Doyle, M. P.
(2002). Fate of Escherichia coli O157:H7 in
manure amended soil. Appl. Environ.
Microbiol., 68: 2605-2609.
Mukherjee, A.; Cho, S.; Scheftel, J.; Jawahir,
S.; Smith, K. and Diez-Gonzalez, F. (2006)
Soil survival of Escherichia coli O157:H7
acquired by a child from garden soil recently
fertilized with cattle manure. J. Appl.
Microbiol., 101: 429–436.
Smith, D., Blackford, M.; Younts, S.; Moxley,
R.; Gray, J.; Hungerford, L.; Milton, T. and
Klopfenstein, T. (2001). Ecological
relationships between the prevalence of cattle
shedding Escherichia coli O157:H7 and
characteristics of the cattle or conditions of
the feedlot pen. J. Food Prot., 64:1899-1903.
Buck, J. W. and Walcott, R. R. (2003).
Recent trends in mi-crobiological safety of
fruits and vegetables. Plant Health Progress,
: 1092-1098.
Hekman, W. E.; Heijnen, C. E.; Trevors, J. T.
and van Elsas, J. D. (1994). Water flow
induced transport of Pseudomonas fluorescens
cells through soil columns as affected by
inoculant treatment. FEMS Microbiol. Ecol.,
:313– 326.
Artz, R. R.; Townend, J.; Brown, K.; Towers,
W. and Killham, K. (2005). Soil Macropores
and compaction control the leaching potential
of Escherichia coli O157:H7. Environ.
Microbiol., 7:241–248.
Lang, N. L., and Smith, S. R. (2007).
Influence of soil type, moisture content and
biosolids application on the fate of
Escherichia coli in agricultural soil under
controlled laboratory conditions. J. Apple.
Microbiol., 103:2122–2131.
Van Elsas, J. D.; Trevors, J.T. and van
Overbeek, L.S. (1991). Influence of soil
properties on the vertical movement of
genetically-marked Pseudomonas fluorescens
through large soil microcosms. Biol. Fert.
Soils., 10: 249-255.
Trevors, J.T.; van Elsas, J.D.; van Overbeek,
L. S. and Starodub, M. E. (1990). Transport of
a genetically engineered Pseudomonas
fluorescens strain through a soil microcosm.
Appl. Enviro. Microbiolo., 56: 401-408.
Saini, R., Halverson, L. J. and Lorimor, J. C.
(2003). Rainfall timing and frequency infl
uence on leaching of Escherichia coli RS2G
through soil following manure application. J.
Environ. Qual., 32:1865–1872.
Fremaux, B.; Delignette-Muller, M. L.;
Prigent-Combaret, C.; Gleizal, A. and
Vernozy- Rozand, C. (2007). Growth and
survival of non-O157:H7 Shiga-toxinproducing Escherichia coli in cow manure. J.
Appl. Microbiol., 102: 89-99.
Franz, E.; Visser, A. A.; Van Diepeningen, A.
D.; Klerks, M. M.; Termorshuizen, A. J. and
Van Bruggen, A. H. C. (2007). Quantification
of contamination of lettuce by GFPexpressing Escherichia coli O157:H7 and
Salmonella enterica serovar Typhimurium.
Food Microbiol., 24: 106-112
Franz, E.; Van Diepeningen, A. D.; De Vos,
O. J. and Van Bruggen, A. H. C. (2005).
Effects of cattle feeding regimen and soil
management type on the fate of Escherichia
coli O157:H7 and Salmonella enterica serovar
Typhimurium in manure, manure-amended
soil, and lettuce. Appl. and Enviro.
Microbiol., 71: 6165-6174.
Franz, E.; Semenov, A. V. and Van Bruggen,
A. H. C. (2008). Quantitative exposure
assessment for the contamination of lettuce
with E. coli O157:H7 from manure-amended
soil. J. App. Microbiol., 10(2): 313 -327.
Kudva, I.T.; Blanch, K. and Hovde, C. J.
(1998). Analysis of Escherichia coli O157:H7
survival in ovine or bovine manure and
manure slurry. Appl. Enviro. Microbiol., 64:
-3174.
Himathongkham, S.; Bahari, S.; Riemann, H.
and Cliver, D. (1999). Survival of Escherichia
coli O157:H7 and Salmonella typhimurium in
cow manure and cow manure slurry. FEMS
Microbiology Letters., 178: 251-257.
Wang, L.; Mankin, K. R. and Marchin, G. L.
(2004). Survival of fecal bacteria in dairy cow
manure. Transactions of the American Society
of Agricultural Engineers., 47: 1239-1246.
Van Veen, J. A.; Van Overbeek, L. S. and
Van Elsas, J. D. (1997). Fate and activity of
microorganisms introduced into soil.
Microbiol. Molecular Biol. Rev., 61: 121-135.
Zhang, A. G.; Beuchat, L. R.; Erickson, M.
C.; Phelan, V. H. and Doyle, M. P. (2009).
Heat and drought stress during growth of
lettuce (Lactuca sativa L.) does not promote
internalization of Escherichia coli ol57:H7. J.
Food. Prot., 72(12):2471 – 2475.
Fenlon, D. R.; Ogden, I. D.; Vinten, A. and
Svoboda, I. (2000). The fate of Escherichia
coli and E. coli O157 in cattle slurry after
application to land. Symposium series (Soc.
Appl. Microbiol.): 149-156.
Natvig, E. E.; Ingham, S. C.; Ingham, B. H.;
Cooperband, L. R. and Roper, T. R. (2002).
Salmonella enterica serovar Typhimurium
and Escherichia coli contamination of root
and leaf vegetables grown in soils with
incorporated bovine manure. Appl. Enviro.
Microbiol., 68: 2737-2744.