Isolation and Detection of Biofilm Producing Pseudomonas aeruginosa from Suspected Urinary Tract Infections in Dogs and Its Resistance to Antibiotics
Main Article Content
Abstract
This study aimed to determine the relationship between the biofilm formation in Pseudomonas aeruginosa and the protein concentration ins it, as well as to determine the resistance of this bacterium to antibiotics. A total of 108 urine samples were collected from suspected urinary tract infections (UTIs) in dogs, conducting general urine examination (GUE) to detect the infection, isolation, and identification the bacteria based on traditional diagnostic tests, the VITEK-2 system, and polymerase chain reaction (PCR) targeting the 16S rRNA gene. The study involved determining the antibiotic susceptibility of the isolates against ten antibiotics, determination of the biofilm layer by the tube method and Congo red method, evaluation of the strength of biofilm by microtiter plate, and detection of the biofilm protein concentration by Bradford method. The total number of P. aeruginosa isolates was 6/108 (5.5%), among which the isolates that produced the biofilm were 5/6 (83.33%). These isolates were confirmed by the VITEK-2 assay followed by the PCR and sequencing of the amplicon that validated the identity of the isolates, with 99% similarity to P. aeruginosa reference sequences, and the sequences were deposited in NCBI GenBank (accession numbers PP979721.1–PP979726.1). Analysis showed a strong positive correlation (r = 0.998) between the biofilm formation and the protein concentration. All isolates demonstrated 100% resistance to amikacin, trimethoprim, cefotaxime, amoxicillin/clavulanic acid, ampicillin, cephalexin, and lincomycin, and 33% were resistant to gentamicin, while 100% were sensitive to ciprofloxacin. In conclusion, these findings underscore a significant correlation between biofilm formation and protein concentration. The knowledge of bacterial ability to form biofilms and their antibiotic resistance pattern is important to improve veterinary practices and prescription of the appropriate antibiotic in the context of UTIs in dogs.
Received: 08 October 2024
Revised: 13 April 2025
Accepted: 04 May 2025
Published: 28 June 2025
Downloads
Article Details
How to Cite
Publication Dates
References
1. Behzadi P, Baráth Z, Gajdács M. It’s not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiotics. 2021;10(1):42. https://doi.org/10.3390/antibiotics10010042
2. Urgancı NN, Yılmaz N, Alaşalvar GK, Yıldırım Z. Pseudomonas aeruginosa and its pathogenicity. Tur J Agric Food Sci Technol. 2022;10(4):726-738. https://doi.org/10.24925/turjaf.v10i4.726-738.4986
3. Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells. 2023;12(1):199. https://doi.org/10.3390/cells12010199
4. Abdulhaq N, Nawaz Z, Zahoor MA, Siddique AB. Association of biofilm formation with multi drug resistance in clinical isolates of Pseudomonas aeruginosa. EXCLI J. 2020;19:201-208. 10.3390/antibiotics10010042
5. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol infect. 2012;18(3):268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
6. de Sousa T, Garcês A, Silva A, Lopes R, Alegria N, Hébraud M, et al. The impact of the virulence of Pseudomonas aeruginosa isolated from dogs. Vet Sci. 2023;10(5):343. https://doi.org/10.3390/vetsci10050343
7. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-192. https://doi.org/10.1016/j.biotechadv.2018.11.013
8. Yaseen NN, Ahmed DA. Detection of mexB multidrug efflux gene in some local isolates of Pseudomonas aeruginosa. Iraqi J Sci. 2023; 64(1): 111-118. https://doi.org/10.24996/ijs.2023.64.1.11
9. Adamiak JW, Jhawar V, Bonifay V, Chandler CE, Leus IV, Ernst RK, et al. Loss of RND-type multidrug efflux pumps triggers iron starvation and lipid A modifications in Pseudomonas aeruginosa. Antimicrobial Agents Chemotherapy. 2021;65(10): e00592-21. https://doi.org/10.1128/AAC.00592-21
10. Abd Al-Rubai MG. The relationship between the site of infection and virulence of Pseudomonas aeruginosa experimental infection in mice. Iraqi J Vet Med. 2013;37(2):284-293.
11. Kothari A, Kumar SK, Singh V, Kumar P, Kaushal K, Pandey A, et al. Association of multidrug resistance behavior of clinical Pseudomonas aeruginosa to pigment coloration. Eur J Med Res 27,120(2022). https://doi.org/10.1186/s40001-022-00752-6
12. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections. J Chinese Med Assoc. 2018;81(1):7-11. https://doi.org/10.1016/j.jcma.2017.07.012
13. Mohammed HA, Zgair AK. Detection of quorum sensing genes of Pseudomonas aeruginosa isolated from different areas in Iraq. Iraqi J Sci. 2022; 63(11): 4665-4673. https://doi.org/10.24996/ijs.2022.63.11.5
14. Yaaqoob LA, Younis RW, Kamona ZK, Altaee MF, Abed RM. Biosynthesis of nio nanoparticles using prodigiosin pigment and its evaluate of antibacterial activity against biofilm producing MDR-Pseudomonas aeruginosa. Iraqi J Sci. 2023;64(3):1171-1179. https://doi.org/10.24996/ijs.2023.64.3.13
15. Al-Fhdawi AA, Rabee AM. Molecular study of the relationship of gene expression of some genes with the temperature variation of bacterial growth. Baghdad Sci J. 2024; 21(2):0313-0327. https://doi.org/10.21123/bsj.2023.7709
16. Zhang W, Sun J, Ding W, Lin J, Tian R, Lu L, et al. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Front Cell Infect Microbiol. 2015;5:40. https://doi.org/10.3389/fcimb.2015.00040
17. Razzaq AH., Al-Kubaisi W., Aziz L., HussainA. Bacteriological and molecular study of Pseudomonas aeruginosa strains isolated from different clinical cases in Erbil and Kurkuk. Iraqi J Vet Med. 2017;41(2):124-130. https://doi.org/10.30539/iraqijvm.v41i2.61
18. Lafta IJ, Sadeq Z. Pseudomonas aeruginosa is an Effective Indicator for Screening of Quorum Sensing Inhibition by Plant Extracts. Iraqi J Vet Med. 2024;48(1):54-62. https://doi.org/10.30539/nzsc0y49
19. Komala M, Kumar KS. Urinary tract infection: causes, symptoms, diagnosis and it's management. Indian J Res Pharm Biotechnol. 2013;1(2):226-233.
20. Pereira A, Jota Baptista C, Oliveira PA, Coelho AC. Urinary tract bacterial infections in small animal practice: clinical and epidemiological aspects. Veterinarska stanica. 2024;55(6):703-720. https://doi.org/10.46419/vs.55.6.8
21. Ataya HA, Soliman SM, Marouf S, Alamry K. Incidence, bacterial causes and antibiotic resistance patterns of urinary tract infection in pet animals. J App Vet Sci. 2023 Apr1;8(2):35-43. 10.21608/javs.2023.179690.1199
22. Mohmoud MH, Al-Dujaily AH. Dipstick urine analysis screening among asymptomatic dogs of k9 units. Iraqi J Vet Med. 2018;42(1):61-64. https://doi.org/10.30539/iraqijvm.v42i1.32
23. Al-Taee HS, Al-Samarraae IA, Al-Ahmed HI. Antibiotic susceptibility and molecular detection of Pseudomonas aeruginosa isolated from bovine mastitis. Iraqi J Vet Med. 2019 ;43(2):77-85. https://doi.org/10.30539/iraqijvm.v43i2.536
24. Bouillon J, Snead E, Caswell J, Feng C, Hélie P, Lemetayer J. Pyelonephritis in dogs: retrospective study of 47 histologically diagnosed cases (2005–2015). J Vet Int Med. 2018;32(1):249-259. https://doi.org/10.1111/jvim.14836
25. Punia M, Gulia D, Kumar A, Charaya G. Evaluation of physico-chemical and microscopical changes of urine in dogs with urinary tract infection. Haryana Vet.2018;57(2): 191-193.
26. Devnath P, Uddin MK, Aha F. Extraction, purification and charact Pseudomonas aeruginosa. Extraction. Int. Res. J. Biological S. 2017; 6(5):1-9.
27. Hakim AS, Dorgham SM, Abuelhag HA, Sadek EG, Dapgh AN, Youssif NH, et al. Isolation and identification of Pseudomonas aeruginosa obtained from dogs and cats in Great Cairo regarding status of phenotypic antimicrobial resistance pattern. Egyptian Pharm J. 2024;23(3):525-531. https://doi.org/10.4103/epj.epj_340_23
28. Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS one. 2015;10(2):e0117617. https://doi.org/10.1371/journal.pone.0117617
29. Ciocan Moțco OA, Çiftçi A, Carp Cărare M, Mareș M, Guguianu E, Rîmbu CM, et al. Determination of biofilm production in animals originated Pseudomonas aeruginosa strains. Repository of lasi University Life Sci. 2016;V(59): P(4). URI: shttps://repository.iuls.ro/xmlui/handle/20.500.12811/1730
30. Furtuna DK, Debora K, Wasito EB. Comparison of microbiological examination by test tube and congo red agar methods to detect biofilm production on clinical isolates. Folia Medica Indonesiana. 2018; 54(1):22-28. https://doi.org/10.20473/fmi.v54i1.8047
31. Nader MI, Kareem AA, Rasheed MN, Issa MA. Biofilm formation and detection of pslÁ gene in multidrug resistant Pseudomonas aeruginosa isolated from Thi-Qar, Iraq. Iraqi J Biotechnol. 2017;16(4):89-103.
32. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. Apmis. 2007;115(8):891-899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
33. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976;72(1-2):248-254. https://doi.org/10.1006/abio.1976.9999
34. Igbinosa EO, Ogofure AG, Beshiru A. Evaluation of different agar media for the antibiotic susceptibility testing of some selected bacterial pathogens. University of Lagos J Basic Med Sci. 2022;8(1-2):34-41
35. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; document M100. 33th ed. Clinical and Laboratory Standards Institute. 2023;76-79.
36. Mohammed BQ, Abdullah AH, Rayshan AR. Molecular identification of several Pseudomonas aeruginosa virulence genes. J. Anim. Health Prod. 2024;12(s1):67-74. https://doi.org/10.17582/journal.jahp/2024/12.s1.67.74
37. Raheem SA, Abdalshheed DA. Evaluating the antibacterial and biofilm activity of Pseudomonas aeruginosa isolated from dog’s wound infections. Iranian J Ichthyol. 2023;10:96-104.
38. Hayyawi SM, Abdulrazak MA, Aboud AS, Al-khaban JM, Iesa AM. Study on bacterial isolation from dogs affected with malignant tumor. Iraqi J vet Med. 2009;33(1):120-131. https://doi.org/10.30539/iraqijvm.v33i1.725
39. Smoglica C, Evangelisti G, Fani C, Marsilio F, Trotta M, Messina F, Di Francesco CE. Antimicrobial resistance profile of bacterial isolates from urinary tract infections in companion animals in Central Italy. Antibiotics. 2022;11(10):1363. https://doi.org/10.3390/antibiotics11101363
40. Hattab J, Mosca F, Di Francesco CE, Aste G, Marruchella G, Guardiani P, et al. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Vet World. 2021;14(4):978. https://doi.org/10.14202/vetworld.2021.978-985
41. Alithawy A. Affected factors on Pseudomonas aeruginosa isolated from deferent environmental sources on biofilm formation, M.Sc, thesis - College of Science -University of Anbar; 2010.
42. Altabakchally B. Detection of biofilm formed by Escherichia coli isolated from milk and fecal animal samples and evaluation its immunogenicity. M.Sc. Thesis - College of Veterinary Medicine- Baghdad University-Iraq; 2015.
43. Hariharan H, Brathwaite-Sylvester E, Belmar VM, Sharma R. Bacterial isolates from urinary tract infection in dogs in Grenada, and their antibiotic susceptibility. Open J Vet Med. 2016; 6(6):85-88. https://doi.org/10.4236/ojvm.2016.66010
44. Płókarz D, Bierowiec K, Rypuła K. Screening for Antimicrobial Resistance and Genes of Exotoxins in Pseudomonas aeruginosa Isolates from Infected Dogs and Cats in Poland. Antibiotics. 2023;12(7):1226. https://doi.org/10.3390/antibiotics12071226
45. Darwich L, Seminati C, Burballa A, Nieto A, Durán I, Tarradas N, Molina‐López RA. Antimicrobial susceptibility of bacterial isolates from urinary tract infections in companion animals in Spain. Vet Rec. 2021;188(9):e60. https://doi.org/10.1002/vetr.60
46. Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian J Microbiol. 2021; 52:1701–1718. https://doi.org/10.1007/s42770-021-00624-x
47. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002;184(4):1140–1154. https://doi.org/10.1128/jb.184.4.1140-1154.2002
48. Saharan BS, Beniwal N, Duhan JS. From formulation to function: A detailed review of microbial biofilms and their polymer-based extracellular substances. The Microbe. 2024:100194. https://doi.org/10.1016/j.microb.2024.100194
49. Chen Z, Xie Y, Qiu S, Li M, Ge S. Enriched functional exoproteins and increased exopolysaccharides with altered molecular conformation mutually promoted indigenous microalgal-bacterial consortium biofilm growth under high light intensity. Chem Eng J. 2024;480:148056. https://doi.org/10.1016/j.cej.2023.148056
50. Ahimou F, Semmens MJ, Haugstad G, Novak PJ. Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Applied and environmental microbiology. 2007;73(9):2905-2910. https://doi.org/10.1128/AEM.02420-06
51. Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S, et al. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics. 2021;10(9):1134. https://doi.org/10.3390/antibiotics10091134
52. Syaiful I, Widodo AD, Endraswari PD, Alimsardjono L, Utomo B, Arfijanto MV. The association between biofilm formation ability and antibiotic resistance phenotype in clinical isolates of gram-negative bacteria: a cross-sectional study. Bali Med J. 2023;12(1):1014-1020. https://doi.org/10.15562/bmj.v12i1.4101
53. Langendonk RF, Neill DR and Fothergill JL. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: implications for current resistance-breaking therapies. Front Cell Infect Microbiol. 2021:11. https://doi.org/10.3389/fcimb.2021.665759
54. Karballaei Mirzahosseini H, Hadadi-Fishani M, Morshedi K, Khaledi A. Meta-Analysis of biofilm formation, antibiotic resistance pattern, and biofilm-related genes in Pseudomonas aeruginosa isolated from clinical samples. Microb Drug Resist. 2020;26(7):815-824. https://doi.org/10.1089/mdr.2019.0274
55. Wong C, Epstein SE, Westropp JL. Antimicrobial susceptibility patterns in urinary tract infections in dogs (2010–2013). J Vet Intern Med. 2015; 29(4):1045-1052. https://doi.org/10.1111/jvim.13571
56. Pereira A, de Sousa T, Silva C, Igrejas G, Poeta P. Impact of Antimicrobial Resistance of Pseudomonas aeruginosa in Urine of Small Companion Animals in Global Context: Comprehensive Analysis. Vet Sci. 2025;12(2):157. https://doi.org/10.3390/vetsci12020157
57. Manrique PD, López CA, Gnanakaran S, Rybenkov VV, Zgurskaya HI. New understanding of multidrug efflux and permeation in antibiotic resistance, persistence, and heteroresistance. Annals of the New York Acad Sci. 2023;1519(1):46-62. https://doi.org/10.1111/nyas.14921
58. Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, et al. The assessment of listing and categorization of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Pseudomonas aeruginosa in dogs and cats. EFSA J. 2022;20(5):7310. https://doi.org/10.2903/j.efsa.2022.7310
59. Šeol B, Naglić T, Madić J, Bedeković M. In vitro antimicrobial susceptibility of 183 Pseudomonas aeruginosa strains isolated from dogs to selected antipseudomonal agents. J Vet Med, Series B. 2002;49(4):188-192. https://doi.org/10.1046/j.1439-0450.2002.00548.x
60. Hong J, Sylvester W, Alhassan A, Sharma B, sAmadi V. Retrospective Analysis of Antimicrobial Susceptibility Pattern of Pseudomonas aeruginosa from Clinical Samples of Dogs in Grenada, West Indies. Indian Journal of Animal Research. 2025; 59(1):136-140. https://doi.org/10.18805/IJAR.B-5310