Investigating the Potential Hepatoprotective Effect of Quercetin in Male Rats ‎Following Acute Exposure to Cyclophosphamide

Main Article Content

Mustafa M. Khalaf
Rana A Salih

Abstract

           






This study aimed to assess the hepatoprotective efficacy of quercetin against ‎hepatotoxicity ‎induced by cyclophosphamide in a rat model. A total of 28 male ‎Wister albino rats (Rattusnorvegicus), with body ‎weights ranging from 195.5 to ‎‎198.2 g and approximately three months ‎of age, were randomized into four different ‎groups: the untreated Control group ‎received no interventions; the CYP group was treated with an intraperitoneal ‎injection of ‎cyclophosphamide at a dose of 200 mg/BW; the Qt group received an ‎‎oral administration of quercetin at 100 mg/kg BW daily for ten days; and the combined (Qt+CYP) group received quercetin orally for ten days, followed by a ‎cyclophosphamide ‎injection on the tenth day. Various biochemical markers, ‎including alanine aminotransferase ‎‎(ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and liver glutathione ‎‎(GSH), and malondialdehyde ‎‎(MDA), were analyzed, in addition to body weight and ‎prothrombin time. The ‎Untreated Control group exhibited baseline levels for all assessed ‎markers. In ‎contrast, the CYP group showed elevated levels of ALT, AST, ‎‎ALP, and MDA, coupled with a decrease in GSH. Notably, the Qt+CYP ‎group ‎demonstrated a statistically significant reduction (P‎‎<0.05) in ALT, AST, ALP, ‎and MDA levels, ‎as well as an increase in GSH and prothrombin time, when ‎compared to the CYP group. No significant differences in body ‎weight were observed across all groups ‎‎(P‎‎<0.05). The results of the study indicate that quercetin has the potential to be used as a ‎‎hepatoprotective agent, protecting liver tissues from the cytotoxic effects of cyclophosphamide.





Downloads

Article Details

How to Cite
Investigating the Potential Hepatoprotective Effect of Quercetin in Male Rats ‎Following Acute Exposure to Cyclophosphamide. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 23-30. https://doi.org/10.30539/ijvm.v47i2.1555
Section
Articles

How to Cite

Investigating the Potential Hepatoprotective Effect of Quercetin in Male Rats ‎Following Acute Exposure to Cyclophosphamide. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 23-30. https://doi.org/10.30539/ijvm.v47i2.1555

References

Hashim SM, Saliem AH. Evaluation the Protective Effect of Capparis spinosa Fruits ‎Hydroalcoholic Extract Against ‎Hepatotoxicity Induced by Cisplatin in Rats. HIV ‎Nursing. ‎2022; 22(2):3393-9.‎

Al-ameedi AI , AL-Rekabi FM. Pharmacokinetic Interaction of Favipiravir with ‎Amlodipine in Local ‎Iraqi Rabbits (Oryctolagus ‎cuniculus). J. Surv. Fish. 2023; ‎10(3S):815-22.

Salih, RA. Clinical and Histopathological Study of Diclofenac Sodium Acetylsalicylic ‎Acid Toxic Effect on Liver of Mice. Indian ‎J Med Forensic Med Toxicol. 2020,15(1), ‎2314-2321.‎

Attia AA, Sorour JM, Mohamed NA, Mansour TT, Al-Eisa RA, El-Shenawy NS. ‎Biochemical, ‎Histological, and Ultrastructural ‎Studies of the Protective Role of Vitamin ‎E on ‎Cyclophosphamide-Induced Cardiotoxicity in Male Rats. Biomedicines. ‎‎2023;11(2): 390. https://doi.org/10.3390/biomedicines11020390

Bhat N, Kalthur SG, Padmashali S, Monappa V. Toxic Effects of different doses of cyclophosphamide on liver and kidney tissue in Swiss albino mice: A histopathological study. Ethiop J Health Sci. 2018;28(6):711-716. https://doi.org/10.4314/ejhs.v28i6.5

Alam MF, Ajeibi AO, Safhi MH, Alabdly AJ, Alshahrani S, Rashid H, et al. ‎Therapeutic Potential of capsaicin against ‎‎cyclophosphamide-induced liver damage. J. ‎Clin. Med. 2023;12(3):911.

https://doi.org/10.3390/jcm12030911

Yin Z, Guo H, Jiang K, Ou J, Wang M, Huang C, et al. Morin ‎decreases acrolein-‎induced cell injury in normal human hepatocyte ‎cell line LO2. ‎J. Funct. Foods. 2020; ‎‎75:104234.

https://doi.org/10.1016/j.jff.2020.104234

Taso OV, Philippou A, Moustogiannis A, Zevolis E, Koutsilieris M. Lipid ‎peroxidation products and their role in ‎neurodegenerative diseases. Ann Res Hosp. ‎2019;3(2):1-https://doi.org/10.21037/arh.2018.12.02

Gao S, Chen X, Yu Z, Du R, Chen B, Wang Y, et al. Progress of ‎research on the role of ‎active ingredients of Citri Reticulatae ‎Pericarpium in liver injury. ‎Phytomedicine. 2023‎‎;115(154836).

https://doi.org/10.1016/j.phymed.2023.154836

Mostafa OA, Ibrahim F, Borai E. Protective effects of hesperidin in ‎cyclophosphamide-‎induced parotid toxicity in rats. ‎Sci Rep. 2023;13(1):158. https://doi.org/10.1038/s41598-022-26881-w

Rezaei S, Hosseinimehr SJ, Zargari M, Malekshah AK, Mirzaei M, Amiri FT. ‎Sinapic acid ‎attenuates cyclophosphamide-induced ‎liver toxicity in mice by modulating ‎oxidative stress, ‎NF-κB, and caspase-3. nt. J. Bus. Manag. 2023;26(5):526.

Gaeta R, Brown D, Cohen R, Sorenmo K. Risk factors for development of sterile ‎haemorrhagic ‎cystitis in canine lymphoma ‎patients receiving oral cyclophosphamide: a ‎case-control study. ‎Vet. Comp. Oncol. 2014; 12(4):277-286. https://doi.org/10.1111/vco.12009

Best MP, Fry DR. Incidence of sterile hemorrhagic cystitis in dogs receiving ‎‎cyclophosphamide orally for three days without ‎concurrent furosemide as part of a ‎‎chemotherapeutic treatment for lymphoma: 57 cases (2007-2012). J. Am. Vet. Med. ‎Assoc. ‎‎‎2013; 243(7):1025-1029.

https://doi.org/10.2460/javma.243.7.1025

Al-Mzaien KA. Assessment the Antioxidant and hypolipidmic effect of black cumin ‎‎(Nigella ‎sativa L.) flavonoids in induced ‎oxidative stressed male rabbits. Iraqi J. Vet. ‎Med. ‎‎2012;36(2):163-173.

https://doi.org/10.30539/iraqijvm.v36i2.459

Zhou D, Zhong J, Huang Y, Cheng Y. Effect of free and bound polyphenols from ‎Rosa ‎roxburghii Tratt distiller's grains on ‎moderating fecal microbiota. Food Chemistry: ‎X. 2023;19:100747.

https://doi.org/10.1016/j.fochx.2023.100747

Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. Therapeutic potential of ‎quercetin and ‎its derivatives in epilepsy: evidence ‎from preclinical studies. ‎Neuromolecular Med. 2023 ‎‎;25(2):163-78. https://doi.org/10.1007/s12017-022-08724-z

Rajesh RU, Sangeetha D. A Critical Review on Quercetin Bioflavonoid and its ‎Derivatives: ‎Scope, Synthesis, and Biological ‎Applications with Future Prospects. Arab. ‎J. Chem. 2023;16(8)104881.

https://doi.org/10.1016/j.arabjc.2023.104881

Hatipoğlu D, Özsan M, Kısadere I, Dönmez N. Quaercetin improves renal functional ‎‎disorder and dyslipidemia caused by acute ‎cadmium exposure. Manas J Agr Vet Life ‎Sci. ‎‎2023;13(1):50-58.

https://doi.org/10.53518/mjavl.1196166

Rauf A, Imran M, Khan IA, ur‐Rehman M, Gilani SA, Mehmood Z, et al. Anticancer ‎potential of quercetin: A comprehensive ‎review. Phytother Res. 2018;32(11):2109-2130.

https://doi.org/10.1002/ptr.6155

‏Köroğlu R, Savaş Gül S, Aygun H. Evaluation of preventive effect of quercetin on ‎‎doxorubicin-induced nephrotoxic rat model ‎by [99mTc] Tc-DMSA renal cortical ‎scintigraphy ‎and biochemical methods. Iran J Nucl Med. 2023. 31(2):112-118 ‎

Osman HE, Maalej N, Shanmuganayagam D, Folts JD. Grape juice but not orange or ‎‎grapefruit juice inhibits platelet activity in ‎dogs and monkeys (Macaca fasciularis). J ‎Nutr. ‎‎1998;128(12):2307-2312.

https://doi.org/10.1093/jn/128.12.2307

Adhikari A, Asdaq SM, Al Hawaj MA, Chakraborty M, Thapa G, Bhuyan NR, et al. ‎Anticancer drug-induced cardiotoxicity: ‎‎insights and pharmacogenetics. ‎Pharmaceuticals. 2021;14(10):970.

https://doi.org/10.3390/ph14100970

Şengül E, Gelen V, Gedikli S, Özkanlar S, Gür C, Çelebi F, et al. The protective ‎effect of ‎quercetin on cyclophosphamide-Induced ‎lung toxicity in rats. Biomed. ‎Pharmacother. 2017;‎‎92:303-307.

https://doi.org/10.1016/j.biopha.2017.05.047

Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. ‎Vagus nerve stimulation attenuates the systemic ‎inflammatory ‎response to endotoxin. ‎Nature. 2000;405(6785):458-462.

https://doi.org/10.1038/35013070

Tripodi A, Chantarangkul V, Primignani M, Fabris F, Dell'Era A, Sei C, et al. The ‎international normalized ratio calibrated for ‎cirrhosis (INRliver) normalizes ‎‎prothrombin time results for model for end‐stage liver disease calculation. Hepatology. ‎‎2007;‎‎‎46(2):520-527. https://doi.org/10.1002/hep.21732

SAS. Statistical Analysis System, User's Guide. Statistical. Version 9.6th ed. SAS. ‎Inst. Inc. ‎Cary. N.C. USA.‎‏ ‏‎2018.‎

Fard Tabrizi FP, Hajizadeh-Sharafabad F, Vaezi M, Jafari-Vayghan H, Alizadeh ‎M, ‎Maleki V. Quercetin and polycystic ovary ‎syndrome, current evidence and future ‎‎directions: a systematic review. J. Ovarian Res. 2020;13(1):1-0. https://doi.org/10.1186/s13048-020-0616-z

Adikwu E, Bokolo B. Effect of cimetidine on cyclophosphamide-induced liver ‎toxicity in ‎albino rats. Asian J Med Sci. 2018;‎‎9(5):50-56. https://doi.org/10.3126/ajms.v9i5.19910

Elshater AE, Haridy MA, Salman MM, Fayyad AS, Hammad S. Fullerene C60 nanoparticles ameliorated cyclophosphamide-‎induced acute hepatotoxicity in rats. Biomed. Pharmacother. 2018;97:53-59.

https://doi.org/10.1016/j.biopha.2017.10.134

Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent advances in 2D and 3D in vitro systems ‎using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating ‎mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol. 2013; 87(8):1315-1530. https://doi.org/10.1007/s00204-013-1078-5

El-yamany I, Kholoussi N, Raouf HA, Ibrahim DF, Hussein AS. Nigella sativa and Aloe vera protection against doxorubicin ‎hepatotoxicity. J Exp Appl Animal Sci (Sl). 2016;2(1):10-22.

https://doi.org/10.20454/jeaas.2016.1079

Ghosh S, Ghosh D, Chattopadhyay S, DEBNATH J. Effect of ascorbic acid supplementation on liver and kidney toxicity in ‎cyclophosphamide-treated female albino rats. J Toxicol Sci. 1999; 24(3):141-4.

https://doi.org/10.2131/jts.24.3_141

Germoush MO, Mahmoud AM. Berberine mitigates cyclophosphamide-induced hepatotoxicity by modulating antioxidant ‎status and inflammatory cytokines. J. Cancer Res. Clin. Oncol. 2014; 140:1103-9. https://doi.org/10.1007/s00432-014-1665-8

Mano Y, Tsukada H, Kurihara T, Nomura M, Yokogawa K, et al. Development of dosage design of hepatic metabolizing drugs ‎using serum albumin level in chronic hepatic failure. Biol. Pharm. Bull. 2006;29(8):1692-9. https://doi.org/10.1248/bpb.29.1692

Salman MM, Kotb AM, Haridy MA, Hammad S. Hepato-and nephroprotective effects of bradykinin potentiating factor from ‎scorpion (Buthus occitanus) venom on mercuric chloride-treated rats. EXCLI J. 2016; 15:807.‎

Salman MM, Kotb AM, Haridy MA, Golka K, Hammad S. Effect of a bradykinin-potentiating factor isolated from scorpion ‎venom (Leiurus quinquestriatus) on some blood indices and lipid profile in irradiated rats. Mol. Cell. Biochem. 2017; 434:1-6. https://doi.org/10.1007/s11010-017-3029-6

Abdalla O, El-Boshy M, Abdelhamid F, Mohammed F Hamed, Ahmed S. Fenugreek,El Sebaey A (Trigonella Foenum-Graeceum ‎Linne) extract alleviate the erytheropoietic, hepatic and renal dysfunctions induced by Cyclophosphamide in rats. Annals of ‎Veterinary and Animal Science .2016; 3(4) 94-107.‎

Öner AC, Mercan U, Öntürk H, Cengiz N, Erten R, Özbeke H. Anti-inflammatory and hepatoprotective activities of Trigonella ‎foenum-graecum L. Pharmacologyonline. 2008;2(9):126-132.‎

Hfaiedh N, Alimi H, Murat JC, Elfeki A. Protective effects of fenugreek (Trigonella foenum graecum L.) upon dieldrin-induced ‎toxicity in male rat. Gen. Physiol. Biophys. 2012;31(4):423-430.‎

https://doi.org/10.4149/gpb_2012_044

Sherif IO. The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway. Int. ‎Immunopharmacol. 2018;61:29-36. https://doi.org/10.1016/j.intimp.2018.05.007

Zhu H, Long MH, Wu J, Wang MM, Li XY, Shen H, et al. Ginseng alleviates cyclophosphamide-induced hepatotoxicity via ‎reversing disordered homeostasis of glutathione and bile acid. Sci. Rep. 2015;5(1):17536. https://doi.org/10.1038/srep17536

Duggina P, Kalla CM, Varikasuvu SR, Bukke S, Tartte V. Protective effect of centella triterpene saponins against ‎cyclophosphamide-induced immune and hepatic system dysfunction in rats: its possible mechanisms of action. J. Physiol. ‎Biochem. 2015;71:435-454. https://doi.org/10.1007/s13105-015-0423-y

Oyagbemi AA, Omobowale OT, Asenuga ER, Akinleye AS, Ogunsanwo RO, et al. Cyclophosphamide-induced hepatotoxicity in ‎wistar rats: the modulatory role of gallic acid as a hepatoprotective and chemopreventive phytochemical. Int. J. Prev. Med. ‎‎2016;7:51. https://doi.org/10.4103/2008-7802.177898

Alqahtani S, Mahmoud AM. Gamma-glutamylcysteine ethyl ester protects against cyclophosphamide-induced liver injury and ‎hematologic alterations via upregulation of pparγ and attenuation of oxidative stress, inflammation, and apoptosis. Oxid. Med. ‎Cell. Longev. 2016;2016:4016209.

https://doi.org/10.1155/2016/4016209

Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 1995;41(12):1819-1828.‎ https://doi.org/10.1093/clinchem/41.12.1819

Mahmoud AM. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and ‎abrogation of oxidative stress and inflammation. Can. J. Physiol. Pharmacol. 2014;92(9):717-24.‎ https://doi.org/10.1139/cjpp-2014-0204

Mahmoud AM, Germoush MO, Alotaibi MF, Hussein OE. Possible involvement of Nrf2 and PPARγ up-regulation in the ‎protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity. Biomed. Pharmacother. 2017;86:297-‎‎306.‎ https://doi.org/10.1016/j.biopha.2016.12.047

Tuorkey MJ. Therapeutic potential of Nigella sativa oil against cyclophosphamide-induced DNA damage and hepatotoxicity. ‎Nutr Cancer 2017 ;69(3):498-504.

https://doi.org/10.1080/01635581.2017.1285408

Verma PK, Raina R, Prawez S, Sultana M, Singh M, Kumar P. Protective mechanisms of quercetin on cisplatin induced oxidative ‎damage in hepatic tissue of wistar rats. Proceedings of the National Academy of Sciences, India Section B: Biol. sci. 2018;88:1399-1407. https://doi.org/10.1007/s40011-017-0877-5

Myhrstad MC, Carlsen H, Nordström O, Blomhoff R, Moskaug JØ. Flavonoids increase the intracellular glutathione level by ‎transactivation of the γ-glutamylcysteine synthetase catalytical subunit promoter. Free Radic. Biol. Med. 2002;32(5):386-393. https://doi.org/10.1016/S0891-5849(01)00812-7

Kim GN, Jang HD. Protective Mechanism of Quercetin and Rutin Using Glutathione Metabolism on H2O2‐induced Oxidative ‎Stress in HepG2 Cells. Ann. N. Y. Acad. Sci. 2009;1171(1):530-537.

https://doi.org/10.1111/j.1749-6632.2009.04690.x

Kim GN, Kwon YI, Jang HD. Protective mechanism of quercetin and rutin on 2, 2′-azobis (2-amidinopropane) dihydrochloride ‎or Cu2+-induced oxidative stress in HepG2 cells. In Vitro Toxicol. 2011 ;25(1):138-144. https://doi.org/10.1016/j.tiv.2010.10.005

Okamoto T. Safety of quercetin for clinical application. Int. J. Mol. Med. 2005;16(2):275-278.

https://doi.org/10.3892/ijmm.16.2.275

Chirumbolo S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm ‎Allergy Drug Targets. 2010;9(4):263-285. https://doi.org/10.2174/187152810793358741

Persons DL, Yazlovitskaya EM, Cui W, Pelling JC. Cisplatin-induced activation of mitogen-activated protein kinases in ovarian ‎carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin. Cancer Res. ‎‎1999;5(5):1007-1014.‎

Nazıroǧlu M, Karaoğlu A, Aksoy AO. Selenium and high dose vitamin E administration protects cisplatin-induced oxidative ‎damage to renal, liver and lens tissues in rats. Toxicology. 2004;195(2-3):221-230. https://doi.org/10.1016/j.tox.2003.10.012

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions ‎and human disease. Int. J. Biochem. Cell Biol. 2007;39(1):44-84.

https://doi.org/10.1016/j.biocel.2006.07.001

Liang L, Gao C, Luo M, Wang W, Zhao C, Zu Y, et al. Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression ‎against oxidative stress through the Nrf2-dependent antioxidant pathway. J. Agric. Food Chem. 2013;61(11):2755-2761. https://doi.org/10.1021/jf304768p

Nandini C, Madhunapantula SV, Bovilla VR, Ali M, Mruthunjaya K, Santhepete MN, ‎et ‎al. Platelet enhancement by Carica papaya ‎L. leaf fractions in cyclophosphamide ‎‎induced thrombocytopenic rats is due to elevated expression of CD110 receptor on ‎‎‎megakaryocytes. J. Ethnopharmacol. 2021;275:114074. https://doi.org/10.1016/j.jep.2021.114074

Zeuner A, Signore M, Martinetti D, Bartucci M, Peschle C, De Maria R. ‎Chemotherapy-‎induced thrombocytopenia derives from ‎the selective death of ‎megakaryocyte progenitors and ‎can be rescued by stem cell factor. Can Res. ‎‎2007;67(10):4767-‎‎73. https://doi.org/

https://doi.org/10.1158/0008-5472.CAN-06-4303

Liebman HA. Thrombocytopenia in cancer patients. Thrombosis research. 2014‎‎;133:S63-S9.

https://doi.org/10.1016/S0049-3848(14)50011-4

Wang Y, Probin V, Zhou D. Cancer therapy-induced residual bone marrow injury: ‎‎mechanisms of induction and implication for ‎therapy. Curr Can Ther Rev. ‎‎2006‎‎;2(3):271-279.

https://doi.org/10.2174/157339406777934717

Zhai X, Zhang Z, Liu W, Liu B, Zhang R, Wang W, et al .‎Protective effect of ALDH2 ‎against cyclophosphamide-induced acute ‎hepatotoxicity via ‎attenuating oxidative stress ‎and reactive aldehydes. Biochemical and biophysical research ‎communications. ‎‎2018‎‎;499(1):93-98.

https://doi.org/10.1016/j.bbrc.2018.03.041

Matsumura I, Kanakura Y. Molecular control of megakaryopoiesis and ‎thrombopoiesis. Int. J. Hematol. 2002;75:473-483. https://doi.org/10.1007/BF02982109

Tarar M, Hasan UH, Saleem M. Evaluation of anticoagulant and thrombolytic ‎activity of ‎Berberis orthobotrys in animal ‎model. Bangladesh J. Pharmacol. 2018;‎‎13(2):196-202.

https://doi.org/10.3329/bjp.v13i2.36201

Pawlaczyk I, Czerchawski L, Kuliczkowski W, Karolko B, Pilecki W, Witkiewicz W, ‎et al. Anticoagulant and anti-platelet ‎activity of polyphenolic-polysaccharide ‎preparation isolated ‎from the medicinal plant Erigeron canadensis L. Thromb Res. ‎‎2011;127(4):328-340‎. https://doi.org/10.1016/j.thromres.2010.11.031

Similar Articles

You may also start an advanced similarity search for this article.