Age-Dependent Expression of Humanin in the Bull (Bos Taurus) Testis and Its Potential Role in Regulating Hormonal Status, Oxidative Stress and MicroRNA Expression

Main Article Content

Ali Louei Monfared
Alaa Rahman Ghyadh

Abstract





Humanin (HN), a mitochondrial-derived peptide with cytoprotective functions, has not been thoroughly investigated in the bull gonad. This study characterized the developmental localization of HN in the bull testis and its relationship with hormonal status, oxidative stress, and key miRNAs. An age dependent HN expression pattern was seen by immunofluorescence examinations of testicular tissues from pre-pubertal, puberty, mature, and aged bulls. So that, pre-pubertal and aged groups showed faint HN immunoreactivity, pubertal animals showed moderate immunoreactivity, and mature adults showed the most intense immune response (P ≤ 0.0001). In contrast to this, miR-202-5p and miR-21 had their highest expression levels during pre-pubertal, pubertal, and mature testes and a significant decrease in aged bulls (P ≤ 0.0001). Despite the contrasting developmental trends observed at the group level, a correlation analysis involving all individual animals (n = 40) demonstrated a robust positive association between HN and miR-202-5p levels (r = 0.8196, P < 0.001). This finding implies a close regulatory connection between these molecules that functions throughout various developmental stages. Quantitatively, HN levels was correlated positively with serum testosterone (r = 0.5852, P < 0.01) and the antioxidant enzyme SOD (r = 0.8208, P < 0.001), and negatively with the oxidative stress marker MDA (r = - 0.7140, P < 0.001). The current findings show the first developmentally-specific HN expression in the bull testis, which is linked to peak reproductive maturity, hormonal balance, and redox homeostasis. The correlation with miR-202-5p suggests that there is a potential new regulatory network, and that HN is a crucial peptide for testicular function and aging. The results of this study could facilitate additional investigations into the distribution of HN throughout gonadal development, ultimately enhancing the reproductive efficiency of livestock‎‎‎.





Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Ali Louei Monfared, Ilam University, Ilam, Iran

Department of Histology, Faculty of Veterinary Sciences

Alaa Rahman Ghyadh, Ilam University, Ilam, Iran

Department of Histology, Faculty of Veterinary Sciences

How to Cite

Louei Monfared, A., & Rahman Ghyadh, A. . (2025). Age-Dependent Expression of Humanin in the Bull (Bos Taurus) Testis and Its Potential Role in Regulating Hormonal Status, Oxidative Stress and MicroRNA Expression. The Iraqi Journal of Veterinary Medicine, 49(2), 44-52. https://doi.org/10.30539/8cdhrg85

Publication Dates

References

‎1.‎ Acevedo-Rodriguez A, Kauffman AS, Cherrington BD, Borges CS, ‎Roepke TA, Laconi M. Emerging insights into hypothalamic-‎pituitary-gonadal axis regulation and interaction with stress ‎signaling. J Neuroendocrinol. 2018;30(10):e12590. ‎https://doi.org/10.1111/jne.12590

‎2.‎ Mohammed BT, Donadeu FX. Localization and in silico-based ‎functional analysis of miR-202 in bull testis. Reprod Domest Anim. ‎‎2022;57(9):1082-1087. https://doi.org/10.1111/rda.14159

‎3.‎ Dong S, Chen C, Zhang J, Gao Y, Zeng X, Zhang X. Testicular aging, male ‎fertility and beyond. Front Endocrinol. 2022;13:1012119. ‎

https://doi.org/10.3389/fendo.2022.1012119

‎4.‎ Matzkin ME, Calandra RS, Rossi SP, Bartke A, Frungieri MB. ‎Hallmarks of Testicular Aging: The challenge of anti-inflammatory ‎and antioxidant therapies using natural and/or pharmacological ‎compounds to improve the physiopathological status of the aged ‎male gonad. Cells. 2021;10(11):3114. ‎https://doi.org/10.3390/cells10113114

‎5.‎ Kandil NT, Sabry DA, Ashry NI, El-Sayyad HI. Studies on the anti-‎aging properties of bovine whey supplementation on reproductive ‎hormonal profiles and sperm structure and function of adult and ‎senile rats. Food Biosci. 2022;45:101369. ‎

https://doi.org/10.1016/j.fbio.2021.101369

‎6.‎ Matsuoka M, Hashimoto Y, Aiso S, Nishimoto I. Humanin and ‎colivelin: neuronal-death-suppressing peptides for Alzheimer's ‎disease and amyotrophic lateral sclerosis. CNS Drug Rev. ‎‎2006;12(2):113-122. https://doi.org/10.1111/j.1527-3458.2006.00113.x

‎7.‎ Lue Y, Swerdloff R, Liu Q, Mehta H, Hikim AS, Lee KW, et al. Opposing ‎roles of insulin-like growth factor binding protein 3 and humanin in ‎the regulation of testicular germ cell apoptosis. Endocrinol. ‎‎2010;151(1):350-357. https://doi.org/10.1210/en.2009-0577

‎8.‎ Rao M, Wu Z, Wen Y, Wang R, Zhao S, Tang L. Humanin levels in ‎human seminal plasma and spermatozoa are related to sperm ‎quality. Androl. 2019;7(6):859-866. ‎https://doi.org/10.1111/andr.12614

‎9.‎ Zhu S, Hu X, Bennett S, Xu, Mai Y. The molecular structure and role ‎of humanin in neural and skeletal diseases, and in tissue ‎regeneration. Front. Cell Dev. Biol. 2022;10:823354. ‎https://doi.org/10.3389/fcell.2022.823354

‎10.‎ Xia Y, Zhang HY, Ma S, Zhou F. Age-related changes in humanin ‎expression in the ovarian tissue of rat. Curr Med Sci. ‎‎2023;43(3):579-584. https://doi.org/10.1007/s11596-023-2732-7

‎11.‎ Katiyar R, Ghosh SK, Kumar A, Pande M, Gemeda AE, Rautela R, et al. ‎Cryoprotectant with a mitochondrial derived peptide, humanin, ‎improves post-thaw quality of buffalo spermatozoa. Cryo Letters. ‎‎2022;43(1):32-41. https://doi.org/10.54680/fr22110110212

‎12.‎ Katiyar R, Ghosh SK, Karikalan M, Kumar A, Pande M, Gemeda AI, et ‎al. An evidence of humanin-like peptide and humanin mediated ‎cryosurvival of spermatozoa in buffalo bulls. Theriogenology. ‎‎2022;194:13-26. ‎https://doi.org/10.1016/j.theriogenology.2022.09.013

‎13.‎ Chen J, Gao C, Lin X, Ning Y, He W, Zheng C, et al. The microRNA miR-‎‎202 prevents precocious spermatogonial differentiation and ‎meiotic initiation during mouse spermatogenesis. Development. ‎‎2021;148(24):dev199799. https://doi.org/10.1242/dev.199799

‎14.‎ Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, ‎Tesfaye D. The role of microRNAs in mammalian fertility: from ‎gametogenesis to embryo implantation. Int J Mol Sci. ‎‎2020;21(2):585. https://doi.org/10.3390/ijms21020585

‎15.‎ Zhang J, Liu W, Jin Y, Jia P, Jia K, Yi M. MiR-202-5p is a novel germ ‎plasm-specific microRNA in zebrafish. Sci Rep. 2017;7(1):7055. ‎

https://doi.org/10.1038/s41598-017-07675-x

‎16.‎ Ding Q, Jin M, Wang Y, Liu J, Kalds P, Wang Y, et al. Transactivation of ‎miR-202-5p by steroidogenic factor 1 (SF1) induces apoptosis in ‎goat granulosa cells by targeting TGFβR2. Cells. 2020;9(2):445. ‎https://doi.org/10.3390/cells9020445

‎17.‎ Koenig EM, Fisher C, Bernard H. The beagle dog MicroRNA tissue ‎atlas: identifying translatable biomarkers of organ toxicity. BMC ‎Genomics. 2016;17(649). https://doi.org/10.1186/s12864-016-2958-x

‎18.‎ Jia KT, Zhang J, Jia P, Zeng L, Jin Y, Yuan Y, et al. Identification of ‎microRNAs in zebrafish spermatozoa. Zebrafish. 2015;12(6):387-‎‎397.

https://doi.org/10.1089/zeb.2015.1115

‎19.‎ Hu R, Xu Y, Han B, Chen Y, Li W, Guan G, et al. MiR-202-3p ‎determines embryo viability during mid-blastula transition. Front ‎Cell Dev Biol. 2022;10:897826. ‎https://doi.org/10.3389/fcell.2022.897826

‎20.‎ Dabaja AA, Mielnik A, Robinson BD, Wosnitzer MS, Schlegel PN, ‎Paduch DA. Possible germ cell-Sertoli cell interactions are critical ‎for establishing appropriate expression levels for the Sertoli cell-‎specific MicroRNA, miR-202-5p, in human testis. Basic Clin Androl. ‎‎2015;25:2.

https://doi.org/10.1186/s12610-015-0018-z

‎21.‎ Yuan M, Yang X, Duscher D, Xiong H, Ren S, Xu X, et al. ‎Overexpression of microRNA-21-5p prevents the oxidative stress-‎induced apoptosis of RSC96 cells by suppressing autophagy. Life ‎Sci. 2020;256:118022. https://doi.org/10.1016/j.lfs.2020.118022

‎22.‎ Yu P, Zhao X, Zhou D, Wang S, Hu Z, Lian K, et al. The microRNA-‎mediated apoptotic signaling axis in male reproduction: a possible ‎and targetable culprit in male infertility. Cell Biol Toxicol. ‎‎2025;41(1):54. https://doi.org/10.1007/s10565-025-10006-w

‎23.‎ Tang Q, Zhang Y, Yue L, Ren H, Pan C. Ssc-MiR-21-5p and Ssc-MiR-‎‎615 regulates the proliferation and apoptosis of Leydig cells by ‎targeting SOX5. Cells. 2022;11(14):2253. ‎‎https://doi.org/10.3390/cells11142253

‎24.‎ Rajak SK, Kumaresan A, Gaurav MK, Layek SS, Mohanty TK, ‎Muhammad Aslam MK, et al. Testicular cell indices and peripheral ‎blood testosterone concentrations in relation to age and semen ‎quality in crossbred (holstein Friesian × tharparkar) bulls. Asian-‎Australas J Anim Sci. 2014;27(11):1554-1561. ‎https://doi.org/10.5713/ajas.2014.14139

‎25.‎ Li EZ, Li DX, Zhang SQ, Wang CY, Zhang XM, Lu JY, et al. 17beta-‎estradiol stimulates proliferation of spermatogonia in experimental ‎cryptorchid mice. Asian J Androl. 2007;9(5):659-667. ‎https://doi.org/10.1111/j.1745-7262.2007.00288.x

‎26.‎ Mercati F, Guelfi G, Martì MJI, Dall'Aglio C, Calleja L, Caivano D, et al. ‎Seasonal variation of NGF in seminal plasma and expression of NGF ‎and its cognate receptors NTRK1 and p75NTR in the sex organs of ‎rams. Domest Anim Endocrinol. 2024;89:106877. ‎

https://doi.org/10.1016/j.domaniend.2024.106877

‎27.‎ Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal ‎tissues by thiobarbituric acid reaction. Anal Biochem.1979;95:351-‎‎358.

https://doi.org/10.1016/0003-2697(79)90738-3

‎28.‎ Chin YP, Keni J, Wan J, Mehta H, Anene F, Jia Y, et al. ‎Pharmacokinetics and tissue distribution of humanin and its ‎analogues in male rodents. Endocrinol. 2013;154(10):3739-3744. ‎https://doi.org/10.1210/en.2012-2004

‎29.‎ Lei H, Rao M. The role of humanin in the regulation of reproduction. ‎Biochim Biophys Acta Gen Subj. 2022;1866(1):130023. ‎

https://doi.org/10.1016/j.bbagen.2021.130023

‎30.‎ Jia Y, Lue YH, Swerdloff R, Lee KW, Cobb LJ, Cohen P, et al. The ‎cytoprotective peptide humanin is induced and neutralizes Bax ‎after pro-apoptotic stress in the rat testis. Andrology. ‎‎2013;1(4):651-659. https://doi.org/10.1111/j.2047-2927.2013.00091.x

‎31.‎ Yen K, Mehta HH, Kim SJ, Lue Y, Hoang J, Guerrero N, et al. The ‎mitochondrial derived peptide humanin is a regulator of lifespan ‎and healthspan. Aging (Albany NY). 2020;12(12):11185-11199. ‎https://doi.org/10.18632/aging.103534

‎32.‎ Karachaliou CE, Livaniou E. Neuroprotective action of humanin and ‎humanin analogues: research findings and perspectives. Biol. ‎‎(Basel). 2023;12(12):1534. https://doi.org/10.3390/biology12121534

‎33.‎ Wang Z, Li D, Zhou G, Xu Z, Wang X, Tan S, et al. Deciphering the role ‎of reactive oxygen species in idiopathic asthenozoospermia. Front ‎Endocrinol. 2025;16:1505213. ‎https://doi.org/10.3389/fendo.2025.1505213

‎34.‎ Muzumdar RH, Huffman DM, Atzmon G, Buettner C, Cobb LJ, ‎Fishman S, et al. Humanin: a novel central regulator of peripheral ‎insulin action. PLoS One. 2009;4(7):e6334. ‎‎

https://doi.org/10.1371/journal.pone.0006334

‎35.‎ Coradduzza D, Congiargiu A, Chen Z, Cruciani S, Zinellu A, Carru C, et ‎al M. Humanin and its pathophysiological roles in aging: a ‎systematic review. Biol. (Basel). 2023;12(4):558. ‎https://doi.org/10.3390/biology12040558

‎36.‎ Garza S, Sottas C, Gukasyan HJ, Papadopoulos V. In vitro and in vivo ‎studies on the effect of a mitochondrial fusion promoter on Leydig ‎cell integrity and function. Front Toxicol. 2024;6:1357857. ‎‎https://doi.org/10.3389/ftox.2024.1357857

‎37.‎ Lucas-Herald AK, Mitchell RT. Testicular Sertoli cell hormones in ‎differences in sex development. Front Endocrinol. 2022;13:919670. ‎

https://doi.org/10.3389/fendo.2022.919670

‎38.‎ Onat E, Kocaman N, Hancer S. The protective effects of humanin in ‎rats with experimental myocardial infarction: The role of asprosin ‎and spexin. Heliyon. 2023;9(8):e18739. ‎https://doi.org/10.1016/j.heliyon.2023.e18739

‎39.‎ Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR, et al. ‎MicroRNA-21 regulates the self-renewal of mouse spermatogonial ‎stem cells. Proc Natl Acad Sci U S A. 2011;108(31):12740-12745. ‎https://doi.org/10.1073/pnas.1109987108

‎40.‎ Chen J, Cai T, Zheng C, Lin X, Wang G, Liao S, et al. MicroRNA-202 ‎maintains spermatogonial stem cells by inhibiting cell cycle ‎regulators and RNA binding proteins. Nucleic Acids Res. ‎‎2017;45(7):4142-4157. https://doi.org/10.1093/nar/gkw1287

‎41.‎ Werry N, Russell SJ, Gillis DJ, Miller S, Hickey K, Larmer S, et ‎al.Characteristics of miRNAs present in bovine sperm and ‎associations with differences in fertility. Front Endocrinol ‎‎(Lausanne). 2022;13:874371. ‎https://doi.org/10.3389/fendo.2022.874371

‎42.‎ Sass S, Dietmann S, Burk UC, Brabletz S, Lutter D, Kowarsch A, et al. ‎MicroRNAs coordinately regulate protein complexes. BMC Syst ‎Biol. 2011;5:136. https://doi.org/10.1186/1752-0509-5-136

Similar Articles

You may also start an advanced similarity search for this article.