High Prevalence of Cryptosporidium meleagridis in Domestic Pigeons (Columba livia domestica) Raises a Prospect of Zoonotic Transmission in Babylon Province, Iraq

Main Article Content

Mohammed K.A. Altamimi
Mohammed Th. S. Al-Zubaidi

Abstract

Cryptosporidium is one of the most common protozoan’s parasites with remarkable infectivity of a wide range of animals, including mammals and birds. Domestic pigeons (Columba livia domestica) act as a potential reservoir for several species of Cryptosporidium because they live in close proximity to humans. This study was conducted to assess the genetic diversity of Cryptosporidium in domestic pigeons in Iraq. A total of one hundred samples obtained from feces of domestic pigeons in Babylon province were included. After being exposed to microbial examination, all fecal samples were subsequently screened by nested polymerase chain reaction (PCR) for the possible recognition of Cryptosporidium species. Microscopy tests detected only 14/100 (14%) of infection with Cryptosporidium, while molecular tests detected 21/100 (21%) of the same targeted parasite. Sequencing experiments showed a high prevalence of C. meleagridis with 13/21 (61.90%), followed by C. baileyi with 7/21 (33.33%), while only one infection was detected with C. hominis (1/21) (4.76%). No co-infection with mixed Cryptosporidium spp. was observed, and sex factor was not found to affect the infection rate. In conclusion, this study informed a high prevalence of C. meleagridis in domestic pigeons than both C. baileyi and C. hominis, respectively, signifying a higher zoonotic potential of C. meleagridis between domestic pigeons and their handlers. This finding may raise more questions with regard to the increasing infectivity of C. meleagridis in human. This is the first important screening study in Iraq that uses molecular methods for the detection of Cryptosporidium in domesticated pigeons.

Downloads

Download data is not yet available.

Article Details

How to Cite
High Prevalence of Cryptosporidium meleagridis in Domestic Pigeons (Columba livia domestica) Raises a Prospect of Zoonotic Transmission in Babylon Province, Iraq. (2020). The Iraqi Journal of Veterinary Medicine, 44((E0), 7-13. https://doi.org/10.30539/ijvm.v44i(E0).1012
Section
Articles

How to Cite

High Prevalence of Cryptosporidium meleagridis in Domestic Pigeons (Columba livia domestica) Raises a Prospect of Zoonotic Transmission in Babylon Province, Iraq. (2020). The Iraqi Journal of Veterinary Medicine, 44((E0), 7-13. https://doi.org/10.30539/ijvm.v44i(E0).1012

References

Pumipuntu N, Piratae S. Cryptosporidiosis: A zoonotic disease concern. Vet. World. 2018; 11(5): 681.6.

Caccio SM and Widmer G. Cryptosporidium: Parasite and Disease. New York: Springer; 2014. Chapter 5, Cryptosporidiosis in other vertebrates; p. 237-323.

Slavin D. Cryptosporidium meleagridis (sp. nov). J Comp Pathol. 1955; 65(3): 262.6.

Current WL, Upton SJ, Haynes TB. The life cycle of Cryptosporidium baileyi n. sp. (Apicomplexa, Cryptosporidiidae) infecting chickens. J. Protozool. 1986; 33(2): 289.96.

Ryan UM, Xiao L, Read C, Sulaiman IM, Monis P, Lal AA. et al. A redescription of Cryptosporidium galli Pavlasek, 1999 (Apicomplexa: Cryptosporidiidae) from birds. J. Parasitol. 2003; 89: 809.13.

Holubova N, Sak B, Hor.i.kova M, Hlaskova L, Kv.to.ova D, Menchaca S, et al. Cryptosporidium avium n. sp. (Apicomplexa: Cryptosporidiidae) in birds. Parasitol. Res. 2016; 115: 2243.51.

Chelladurai JJ, Clark ME, Kva. M, Holubova N, Khan E, Stenger BL, et al. Cryptosporidium galli and novel Cryptosporidium avian

genotype VI in North American red-winged blackbirds (Agelaiusphoeniceus). Parasitol Res. 2016; 115: 1901.6.

Yao Q, Zhang X, Chen K, Ma J, Zheng W, Xu X, et al. Prevalence and genetic characterization of Cryptosporidium infection in Java Sparrows (Lonchura oryzivora) in Northern China. BioMed. Res. Int. 2017; 2318476.

Camargo VS, Santana BN, Ferrari ED, Nakamura AA, Nagata WB, NardiARM, et al. Detection and molecular characterization of Cryptosporidium spp. in captive canaries (Serinuscanaria) using different diagnostic methods. Rev Bras Parasitol Vet. 2018; 27(1): 60.5.

Ferrari ED, Nakamura AA, Nardi ARM, Santana BN, da Silva Camargo V, Nagata WB, et al. Cryptosporidium spp. in caged exotic psittacines from Brazil: Evaluation of diagnostic methods and molecular characterization. Exp Parasitolo. 2018; 184: 109.14.

Lijima Y, Itoh N, Phrompraphai T, Ito Y, Kimura Y, Kameshima S. Molecular prevalence of Cryptosporidium spp. among companion birds Kept in pet shops in Japan. Korean J. Parasitol. 2018; 56(3): 281.5.

Jalas M, Tavalla M.Molecular diagnosis and genetic diversity of Cryptosporidium spp. in exotic birds of southwest of Iran. Trop. Biomed. 2018; 35(4): 944.50.

Lallo MA, Calabria P, Milanelo L. Encephalitozoon and Enterocytozoon (Microsporidia) spores in stool from pigeons and exotic birds: microsporidia spores in birds. Vet. Parasitol. 2012; 190: 418.22.

Haro M, Izquierdo F, Henriquez-Gil N, Andres I, Alonso F, Fenoy S, et al. First detection and genotyping of human-associated microsporidia in pigeons from urban parks. Appl Environ Microbiol. 2005; 71:3153.7.

Abreu-Acosta N, Foronda-Rodriguez P, Lopez M, Valladares B. Occurrence of Cryptosporidium hominis in pigeons (Columba livia). Acta Parasit. 2009; 54(1): 1.5.

Graczyk TK, McOliver C, Silbergeld EK, Tamang L, Roberts JD. Risk of handling as a route of exposure to infectious waterborne Cryptosporidium parvum oocysts by Atlantic blue crabs (Callinectes sapidus). Appl Environ Microbiol. 2007; 73(12): 4069.70.

Radfar MH, Asl EN, Seghinsara HR, Dehaghi MM, Fathi S. Biodiversity and prevalence of parasites of domestic pigeons (Columba livia domestica) in a selected semiarid zone of South Khorasan, Iran. Trop Anim. Health Prod. 2012; 44: 225.9.

Koompapong K, Mori H, Thammasonthijarern N, Prasertbun R, Pintong A, Popruk S, et al. Molecular identification of Cryptosporidium spp. in seagulls, pigeons, dogs, and cats in Thailand. Parasite. 2014; 21: 52.

Li J, Lin X, Zhang L, Qi N, Liao S, Lv M, et al. Molecular characterization of Cryptosporidium spp. in domestic pigeons (Columba livia domestica) in Guangdong Province, Southern China. Parasitol. Res. 2015; 114(6): 2237.41.

Novaes R, Pires MS, Sudre AP, Bergamo do Bomfim TC. Captive-bred neotropical birds diagnosed with Cryptosporidium Avian genotype III. Acta Trop. 2018; 178: 297.02.

Ayinmode AB, Falohun OO. Molecular detection of Cryptosporidium species in domestic ducks sold for food in Nigerian live bird markets. Folia Vet. 2018; 62(4): 74.9.

Faraj AA. Distribution of Cryptosporidium spp. infection in wild pigeons in Baghdad city . Iraq. Bas J Vet Research. 2014; 1(2): 48.3.

Al-Khayat KhK, Al-Zubaidi MTS. Some epidemiological study of Cryptosporidium spp. in broiler chickens in some areas of Karbala Province. Iraqi J. Vet. Med. 2015; (1) 39: 5-8.

Casemore DP. Laboratory methods for diagnosing cryptosporidiosis. J. Clin. Pathol. 1991; 44: 445.451.

Bialek R, Binder N, Dietz K, Joachim A, Knobloch J, Zelck UE. Comparison of fluorescence, antigen and PCR assays to detect Cryptosporidium parvum in fecal specimens. Diagn. Microbiol Infect Disease. 2002; 43(4): 283.8.

Al-Shuhaib MBS, Al-Kaaby HN, Alwan SL. A highly efficient electrophoretic method for discrimination between two

Neoscytalidium species using a specific fungal internal transcribed spacer (ITS) fragment. Folia Microbiol. 2019; 64(2): 161.70.

Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000; 7(1-2): 203.14.

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019; 47:636.41.

Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019; 2:47.

McEntyre J, Ostell J. The NCBI Handbook, 2nd ed. US: Bethesda; 2013. Chapter 16. The BLAST sequence analysis tool. National Center for Biotechnology; p. 1-15.

Nakamura AA, Meireles MV. Cryptosporidium infections in birds - a review. Rev Bras Parasitol Vet. 2015; 24(3): 253.67.

Abu Samraa N, Jori F, Xiao L, Rikhotso O, Thompson PN. Molecular characterization of Cryptosporidium species at the wildlife/livestock interface of the Kruger National Park, South Africa. Comp Immunol Microbiol Infect Disease. 2013; 36: 95e302.

Silverlas C, Mattsson JG, Insulander M, Lebbad M. Zoonotic transmission of Cryptosporidium meleagridis on an organic Swedish farm. Int. J. Parasitol. 2012; 42: 963.7.

Chappell CL, Okhuysen PC, Langer-Curry RC, Akiyoshi DE, Widmer G, Tzipori S. Cryptosporidium meleagridis: infectivity in healthy adult volunteers. Am. J. Trop. Med. Hyg. 2011; 85(2): 238.42.

Wang Y, Yang W, Cama V, Wang L, Cabrera L, Ortega Y, et al. Population genetics of Cryptosporidium meleagridis in humans and birds: evidence for cross-species transmission. Int J Parasitol. 2014; 44(8): 515.21.

Liao C, Wang T, Koehler AV, Fan Y, Hu M, Gasser RB. Molecular investigation of Cryptosporidium in farmed chickens in Hubei province, China, identifies ezoonoticf subtypes of C. meleagridis. Parasit Vectors. 2018; 11(1): 484.

Qi M, Wang R, NingC, Li X, Zhang L, Jian F, et al. Cryptosporidium spp. in pet birds: Genetic diversity and potential public health significance. Exp Parasitol. 2011; 128(4): 336.40.

Zhang W, Wang R, Yang F, Zhang L, Cao J, Zhang X, et al. Distribution and genetic characterizations of Cryptosporidium spp. in pre-weaned dairy calves in Northeastern Chinafs Heilongjiang province. PLoS ONE. 2013; 8(1): e54857.

Feng Y, Ryan UM, Xiao L. Genetic diversity and population structure of Cryptosporidium. Trends Parasitol. 2018; 34(11): 997.11.

Stensvold CR, Beser J, Axen C, Lebbad M. High applicability of a novel method for gp60-based subtyping of Cryptosporidium meleagridis. J. Clin. Microbiol. 2014; 52: 2311.19.

Kopacz ., Kva. M, Karpi.ski P, Hendrich AB, S.siadek MM, Leszczy.ski P, et al. The first evidence of Cryptosporidium meleagridis infection in a colon adenocarcinoma from an immunocompetent patient. Front Cell Infect Microbiol. 2019; 9:35.

Ryan U. Cryptosporidium in birds, fish and amphibians. Exp Parasitology. 2010; 124: 113.20.

Cardozo SV, Teixeira-Filho WL, Lopes CW. Experimental transmission of Cryptosporidium baileyi (Apicomplexa: Cryptosporidiidae) isolated of broiler chicken to Japanese quail (Coturnix japonica). Braz J Med Biol Research. 2005; 14: 119.24

Zahedi A, Paparini A, Jian F, Robertson I, Ryan U. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. Int J Parasitol: Parasit. Wildlife. 2015; 5(1): 88.09.

Hashim A, Mulcahy G, Bourke B, Clyne M. Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells. Infect Immunol. 2006; 74(1): 99.07.

Sheoran A, Wiffin A, Widmer G, Singh P, Tzipori S. Infection with Cryptosporidium hominis provides incomplete protection of the host against Cryptosporidium parvum. J Infect Disease. 2012; 205: 1019.23.

Isaza JP, Galvan AL, Polanco V, Huang B, Matveyev AV, Serrano MG, et al. Revisiting the reference genomes of human pathogenic Cryptosporidium species: reannotation of C. parvum Iowa and a new C. hominis reference. Sci Rep. 2015; 5: 16324.

Similar Articles

You may also start an advanced similarity search for this article.