Haemoglobin Epsilon as a Biomarker for the Molecular Detection of Canine ‎Lymphoma

Main Article Content

Layla H Al-Kinani
Margaret A Sharp
Kenneth M Wyatt
Flaminia Coiacetto
Claire R Sharp
Gabriele Rossi
Wayne K Greene


Lymphoma is a cancer arising from B or T lymphocytes that are central immune system ‎components. It is one of the three most common cancers encountered in the canine; ‎lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, ‎such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of ‎canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still ‎crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic ‎conditions and to improve decision-making around treating and what treatment type to use. ‎This study aimed to evaluate a potential novel biomarker related to iron metabolism, ‎embryonic haemoglobin (HBE), for early diagnosis. Archived samples in combination with ‎prospective samples collected from dogs with and without lymphoma were used in this ‎study for the retrospective analyses of this tumor based on the same biomarker amplified by ‎real-time quantitative polymerase chain reaction. The HBE mRNA was aberrantly expressed ‎in canine B and T cell lymphoma compared to the normal lymph node tissue and ‎hyperplastic lymph nodes. In conclusion, this study identified a novel potential biomarker for improving lymphoma ‎diagnosis and treatment in dogs. Further studies with larger sample sizes are needed to ‎confirm the suitability of this biomarker for canine lymphoma diagnosis.


Download data is not yet available.

Article Details

How to Cite
H Al-Kinani, L., A Sharp, M., M Wyatt, K., Coiacetto, F., R Sharp, C., Rossi, G., & K Greene, W. (2023). Haemoglobin Epsilon as a Biomarker for the Molecular Detection of Canine ‎Lymphoma. The Iraqi Journal of Veterinary Medicine, 47(1), 21–27. https://doi.org/10.30539/ijvm.v47i1.1494


Egawa T, Yeh SR. Structural and functional properties of hemoglobins from unicellular ‎organisms as revealed by resonance Raman spectroscopy. J Inorg Biochem. 2005;99 ‎‎(1):72-96.

Estarellas C, Capece L, Seira C, Bidon-Chanal A, Estrin DA, Luque FJ. Structural Plasticity ‎in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways. Adv ‎Protein Chem Struct Biol. 2016;105:59-80.‎

Roesner A, Fuchs C, Hankeln T, Burmester T. A globin gene of ancient evolutionary origin ‎in lower vertebrates: evidence for two distinct globin families in animals. Mol Biol ‎Evol. 2005;22(1):12-20.

Lloyd JA. An Introduction to Erythropoiesis Approaches. In: Lloyd J, editor. Erythropoiesis. ‎Methods in ‎Molecular Biology, vol 1698. New York, NY: Humana Press; 2018. p. 1-10.

Kingsley PD, Malik J, Emerson RL, Bushnell TP, Mcgrath KE, Bloedorn LA, et al. ‎‎"Maturational" globin switching in primary primitive erythroid cells. Blood. ‎‎2006;107(4):1665-1672.‎

Baron MH, Isern J, Fraser ST. The embryonic origins of erythropoiesis in mammals. Blood. ‎‎2012; 119 (21): 4828-37.‎

Bunn HF, Forget BG. Hemoglobin: Molecular, Genetic, and Clinical Aspects. Philadelphia, ‎PA: WB Saunders Co; 1986.‎

Masuoka N, Kodama H, Abe T, Wang DH, Nakano T. Characterization of hydrogen ‎peroxide removal reaction by hemoglobin in the presence of reduced pyridine ‎nucleotides. Biochim Biophys Acta. 2003;1637(1):46-54.‎

Nishi H, Inagi R, Kato H, Tanemoto M, Kojima I, Son D, et al. Hemoglobin is expressed by ‎mesangial cells and reduces oxidant stress. J Am Soc Nephrol. 2008;19(8):1500-8.‎

Gross SS and Lane P. Physiological reactions of nitric oxide and hemoglobin: a radical ‎rethink. Proc Natl Acad Sci USA. 1999;96(18):9967-9969.‎

Wolk M, Martin JE, Nowicki M. Foetal haemoglobin-blood cells (F-cells) as a feature of ‎embryonic tumours (blastomas). Br J Cancer. 2007;97(3):412-419.‎

Rautonen J, Siimes MA. Initial blood fetal hemoglobin concentration is elevated and is ‎associated wtih prognosis in children with acute lymphoid or myeloid leukemia. Blut. ‎‎1990;61 (1), 17.‎

Atyabi N, Rahbarghazi R, Araghi A, Neqouiejahromi OA. Haemoglobin typing and its ‎variations in Iranian domestic dogs. Comp Clin Path. 2012;21(6):1515-1519.‎

Chang SC, Chen HF, Chou MH, Wang HC, Su HY, Wong ML. Haemoglobin in normal and ‎neoplastic canine mammary glands. Vet Comp Oncol. 2010;8(4):302-309.

Zaldivar-Lopez S, Rowell JL, Fiala EM, Zapata I, Couto CG, Alvarez CE. Comparative ‎genomics of canine hemoglobin genes reveals primacy of beta subunit delta in adult ‎carnivores. BMC Genomics. 2017;18(1):141.‎

Bhatt VS, Zaldivar‐Lopez S, Harris DR, Couto CG, Wang PG, Palmer AF. Structure of ‎Greyhound hemoglobin: origin of high oxygen affinity. Acta Cryst. 2011;D67(5):395-‎‎402.‎

Zaldivar Lopez S. Hemoglobin synthesis, function and metabolism in greyhounds ‎‎[dissertation]. The Ohio State University; 2012.‎

Stangegaard M, Dufva M. Reverse transcription using random pentadecamer primers ‎increases yield and quality of resulting cDNA. Biotechniques. 2006;40(5):649-657.

Marshall OJ. PerlPrimer: cross-platform, graphical primer design for standard, bisulphite ‎and real-time PCR. Bioinformatics. 2004;20(15):2471-2472.

Facci MR, Auray G, Meurens F, Buchanan R, Vankessel J, Gerdts V. Stability of expression ‎of reference genes in porcine peripheral blood mononuclear and dendritic cells. Vet ‎Immunol Immunopathol. 2011;141(1-2):11-15.‎

Vorachek WR, Hugejiletu, Bobe G, Hall JA. Reference gene selection for quantitative PCR ‎studies in sheep neutrophils. Int J Mol Sci. 2013;14(6):11484-11495.‎

Jiang X, Xue Y, Zhou H, Li S, Zhang Z, Hou R, et al. Evaluation of reference gene ‎suitability for quantitative expression analysis by quantitative polymerase chain ‎reaction in the mandibular condyle of sheep. Mol Med Rep. 2015;12(4):5633-5640.‎

Falkenberg V, Whistler T, Murray J. Identification of Phosphoglycerate Kinase 1 (PGK1) as ‎a reference gene for quantitative gene expression measurements in human blood RNA. ‎BMC Res Notes. 2011;4:324.‎

Chudwin DS, Rucknagel DL, Scholnik AP, Waldmann TA, Mcintire KR. Fetal hemoglobin ‎and alpha-fetoprotein in various malignancies. Acta Haematol. 1977;58(5):288-93.‎

Flonta SE, Arena S, Pisacane A, Michieli P, Bardell A. Expression and functional regulation ‎of myoglobin in epithelial cancers. Am J Pathol. 2009;175(1):201-206.‎

Emara M, Turner AR, Allalunis-Turner J. Hypoxia differentially upregulates the expression ‎of embryonic, fetal and adult hemoglobin in human glioblastoma cells. Int J Oncol. ‎‎2014;44(3):950-958. Doi: https://doi.org/10.3892/ijo.2013.2239

Bhalla K, Jaber S, Nahid MN, Underwood K, Beheshti A, Landon A, et al. Role of hypoxia ‎in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of ‎HK2 facilitates development of DLBCL. Sci Rep. 2018;8(1):744.‎

Gorr TA, Wichmann D, Pilarsky C, Theurillat JP, Fabrizius A, Laufs T, et al. Old proteins - ‎new locations: myoglobin, haemoglobin, neuroglobin and cytoglobin in solid tumours ‎and cancer cells. Acta Physiol (Oxf). 2011;202(3):563-581.‎

Li X, Wu Z, WANG Y, MEI Q, FU X & HAN W. Characterization of adult α- and β-globin ‎elevated by hydrogen peroxide in cervical cancer cells that play a cytoprotective role against ‎oxidative insults. PLoS ONE. 2013;8(1):e54342.