Characterization and Animal Skin Irritations Investigation of Vemurafenib Microemulsion-Based Hydrogel Using Oily Ionic Liquid
Main Article Content
Abstract
Cutaneous melanoma accounts for a yearly mortality rate of 55,500 persons. The use of oral small-molecule kinase inhibitors, specifically targeting BRAFv600, has been licensed as the principal treatment strategy for managing both locally progressed and metastatic presentations of the condition. Approximately 30% of people on vemurafenib, a BRAFv600 inhibitor, have side effects when are taken orally. Objective: This research was attempted to develop a vemurafenib microemulsion by substituting conventional oil phases with ionic liquids (ILs). The microemulsions were created by dissolving vemurafenib in a combination of ionic liquid (1-Butyl-3-methylimidazolium hexafluorophosphate and 1-Octyl-3-methylimidazolium hexafluorophosphate) and surfactant (Triton x-100). Multiple tests were conducted to measure physical stability, pH determination, content homogeneity examination, and in vitro medicine release analysis. Four formulations of Vemurafenib microemulsions successfully met all criteria in the microemulsion characterisation and assessment tests. The droplet sizes in these microemulsions fell inside the range of microemulsions, which is less than 200 nm. They were then used to create microemulsion-based hydrogels, employing Carbamer 340 as a gelling agent by conducting a simple mixing method. Hydrogels formed from microemulsions containing 1-Octyl-3-methylimidazolium hexafluorophosphate demonstrated the ability to form clear hydrogels with desirable consistency. Regarding Ex-vivo permeability study and skin deposition the permeability profiles of GOT3 formula exhibits a permeability measurement of 33569± 344 mP.s at 6 rpm, whereas GOT4 demonstrates a permeability measurement of 54723± 380 mP.s at 6 rpm. During the skin irritation test, there was no apparent erythema and edema were observed when compared to the negative group. This may indicate that the designed microemulsion-based gel formulation demonstrates good biocompatibility with skin tissue. Topical delivery of vemurafenib is a promising route of drug administration to melanoma skin. Ionic liquids (ILs) have permeation-enhancing properties with either hydrophilic or lipophilic characteristics.
Received : 15 January 2024
Revised : 08 February 2024
Accepted : 02 April 2024
Published : 28 June 2024
Downloads
Article Details
How to Cite
References
1. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, et al. Melanoma. The Lancet. 2018;392(10151):971-984. https://doi.org/10.1016/S0140-6736(18)31559-9
2. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867-1876. https://doi.org/10.1056/NEJMoa1408868
3. Chapman PB, Robert C, Larkin J, Haanen JB, Ribas A, Hogg D, et al. Vemurafenib in patients with BRAFV600 mutation-positive metastatic melanoma: final overall survival results of the randomized BRIM-3 study. Ann. Oncol. 2017;28(10):2581-2587. https://doi.org/10.1093/annonc/mdx339
4. Spengler EK, Kleiner DE, Fontana RJ. Vemurafenib‐induced granulomatous hepatitis. Hepatology. 2017;65(2):745-748. https://doi.org/10.1002/hep.28692
5. Almajidi YQ, Maraie NK, Raauf AMR. Utilization of solid in oil nanodispersion to prepare a topical vemurafenib as potential delivery system for skin melanoma. Appl Nanosci. 2023;13(4):2845-2856. https://doi.org/10.1007/s13204-021-02158-y
6. Szumała P, Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int. J. Pharm. 2022;615:121488. https://doi.org/10.1016/j.ijpharm.2022.121488
7. Al-Rubaye RA, Al-Kinani KK. Formulation and evaluation of prednisolone acetate microemulsion ocular gel. Egy J Hosp Med. 2023;90(1):1744-1751. https://doi.org/10.21608/ejhm.2023.284303
8. Somasundaran P, editors. Encyclopedia of surface and colloid science, 2nd edition; CRC Pr I Llc;United states. 2006. 2372 p.
9. Prat D, Hayler J, Wells A. A survey of solvent selection guides. Green Chem. 2014;16(10):4546-4551. https://doi.org/10.1039/C4GC01149J
10. Blacklock KL, van der Weyden L. Advances in understanding spontaneously occurring melanoma in animals. Vet. Sci. 2023;10(3):210. https://doi.org/10.3390/vetsci10030210
11. Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, et al. Nanotechnology addressing cutaneous melanoma: The Italian landscape. Pharmaceutics. 2021;13(10):1617. https://doi.org/10.3390/pharmaceutics13101617
12. Ha L, Noonan FP, De Fabo EC, Merlino G. Animal models of melanoma. J Investig Dermatol Symp Proc. 2005;10:86-88. https://doi.org/10.1111/j.1087-0024.2005.200409.x
13. Farooq SU, Kumar DS, Shahid AA. Formulation and Evaluation of Vitamin D3 (Cholecalciferol) Self-Nanoemulsifying Drug Delivery Systems for Enhancing Solubility. Int J Pharm Biol Sci. 20199(3):587-598. 10.21276/ijpbs.2019.9.3.76
14. Hamed SB, Abd Alhammid SN. Formulation and characterization of felodipine as an oral nanoemulsions. Iraqi J. Pharm. Sci. 2021;30(1):209-217. https://doi.org/10.31351/vol30iss1pp209-217
15. Naeem M. Microemulsion and microemulsion based gel of Zaleplon for transdermal delivery: Preparation, optimization, and evaluation. Acta Pol Phar-Drug Res. 2019;76(3):543-561. https://doi.org/10.32383/appdr/101663
16. Hajjar B, Zier K-I, Khalid N, Azarmi S, Löbenberg R. Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium. J Pharm Investig. 2018;48:351-362. https://doi.org/10.1007/s40005-017-0327-7
17. Tiwari N, Sivakumar A, Mukherjee A, Chandrasekaran N. Enhanced antifungal activity of Ketoconazole using rose oil based novel microemulsion formulation. J Drug Deliv Sci Technol. 2018;47:434-444. https://doi.org/10.1016/j.jddst.2018.07.007
18. Hammodi ID, Abd Alhammid SN. Preparation and characterization of topical letrozole nanoemulsion for breast cancer. Iraqi J. Pharm. Sci. 2020;29(1):195-206. https://doi.org/10.31351/vol29iss1pp195-206
19. Basheer HS, Noordin MI, Ghareeb MM. Characterization of microemulsions prepared using isopropyl palmitate with various surfactants and cosurfactants. Trop J Pharm Res. 2013;12(3):305-310. https://doi.org/10.4314/tjpr.v12i3.5
20. Thakkar H, Nangesh J, Parmar M, Patel D. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system. J. Pharm Bioallied Sci. 2011;3(3):442. https://doi.org/10.4103/0975-7406.84463
21. Yadav V, Jadhav P, Kanase K, Bodhe A, Dombe S. Preparation and evaluation of microemulsion containing antihypertensive drug. Int J Appl Pharm. 2018;10(5):138-146. https://doi.org/10.22159/ijap.2018v10i5.27415
22. Iradhati AH, Jufri M. Formulation and physical stability test of griseofulvin microemulsion gel. Int J Appl Pharm. 2017;9:23-26. https://doi.org/10.22159/ijap.2017.v9s1.22_27
23. Ghareeb MM. Formulation and characterization of isradipine as oral nanoemulsion. Iraqi J Pharm Sci. 2020;29(1):143-153. https://doi.org/10.31351/vol29iss1pp143-153
24. Liu D, Lu H, Zhang Y, Zhu P, Huang Z. Conversion of a surfactant-based microemulsion to a surfactant-free microemulsion by CO2. Soft Matter. 2019;15(3):462-469. https://doi.org/10.1039/C8SM02444H
25. Ali FR, Shoaib MH, Yousuf RI, Ali SA, Imtiaz MS, Bashir L, et al. Design, development, and optimization of dexibuprofen microemulsion based transdermal reservoir patches for controlled drug delivery. Biomed Res. Int. 2017;17(1):1-15. https://doi.org/10.1155/2017/4654958
26. Dawood NM, Abdul-Hammid SN, Hussein AA. Formulation and characterization of lafutidine nanosuspension for oral drug delivery system. Int J Appl Pharm. 2018;10(2):20-30. https://doi.org/10.22159/ijap.2018v10i2.23075
27. Khullar R, Kumar D, Seth N, Saini S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharm J. 2012;20(1):63-67. https://doi.org/10.1016/j.jsps.2011.08.001
28. Pranali S, Charushila S, Sayali C, Namrata M. Design and characterisation of emulgel of an antifungal drug. J. Pharm. Res. 2019;11(6):2357-2361.
29. Jaber SA, Sulaiman HT, Rajab NA. Preparation, characterization and in-vitro diffusion study of different topical flurbiprofen semisolids. IJDDT. 2020;10(1):81-87. https://doi.org/10.25258/ijddt.10.1.12
30. Sabri LA, Sulayman HT, Khalil YI. An investigation release and rheological properties of miconazole nitrate from Emulgel. Iraqi J Pharm Sci. 2009;18(2):26-31. https://doi.org/10.31351/vol18iss2pp26-31
31. Tung N-T, Vu V-D, Nguyen P-L. DoE-based development, physicochemical characterization, and pharmacological evaluation of a topical hydrogel containing betamethasone dipropionate microemulsion. Colloids and Surfaces B: Biointerfaces. 2019;181:480-488. https://doi.org/10.1016/j.colsurfb.2019.06.002
32. Swatloski RP, Visser AE, Reichert WM, Broker GA, Farina LM, Holbrey JD, et al. On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. Green Chem. 2002;4(2):81-87. https://doi.org/10.1039/b108905f
33. Smail SS, Ghareeb MM, Omer HK, Al-Kinani AA, Alany RG. Studies on surfactants, cosurfactants, and oils for prospective use in formulation of ketorolac tromethamine ophthalmic nanoemulsions. Pharmaceutics. 2021;13(4):467. https://doi.org/10.3390/pharmaceutics13040467
34. Zheng Y, Eli W. Study on the polarity of bmimPF6/Tween80/toluene microemulsion characterized by UV-visible spectroscopy. J Dispersion Sci Technol. 2009;30(5):698-703. https://doi.org/10.1080/01932690802553890
35. Safavi A, Maleki N, Farjami F. Phase behavior and characterization of ionic liquids based microemulsions. Colloids and Surfaces A: Physicochem Eng Aspects. 2010;355(1-3):61-66. https://doi.org/10.1016/j.colsurfa.2009.11.036
36. Ryu K-A, Park PJ, Kim S-B, Bin B-H, Jang D-J, Kim ST. Topical delivery of coenzyme Q10-loaded microemulsion for skin regeneration. Pharmaceutics. 2020;12(4):332. https://doi.org/10.3390/pharmaceutics12040332
37. Łuczak J, Hupka J. Studies on formation and percolation in ionic liquids/TX-100/water microemulsions. J Mol Liq. 2014;199:552-558.https://doi.org/10.1016/j.molliq.2014.08.028
38. Murthy SN, Shivakumar HN. Topical and transdermal drug delivery. Handbook of non-invasive drug delivery systems: William Andrew, New York, US; 2010. p. 1-36. https://doi.org/10.1016/B978-0-8155-2025-2.10001-0
39. Bernkop-Schnürch A, Jalil A. Do drug release studies from SEDDS make any sense? J Control Release. 2018;271:55-59. https://doi.org/10.1016/j.jconrel.2017.12.027
40. Pal N, Kumar S, Bera A, Mandal A. Phase behaviour and characterization of microemulsion stabilized by a novel synthesized surfactant: Implications for enhanced oil recovery. Fuel. 2019;235:995-1009. https://doi.org/10.1016/j.fuel.2018.08.100
41. Joshi SC. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials. 2011;4(10):1861-905. https://doi.org/10.3390/ma4101861
42. ALEXANDER I, KRASNYUK II. Dermatologic gels spreadability measuring methods comparative study. Int J Appl Pharm. 2022;14(1):164-168. https://doi.org/10.22159/ijap.2022v14i1.41267
43. Nikumbh KV, Sevankar SG, Patil MP. Formulation development, in vitro and in vivo evaluation of microemulsion-based gel loaded with ketoprofen. Drug Deliv. 2015;22(4):509-515. https://doi.org/10.3109/10717544.2013.859186
44. Vu QL, Fang C-W, Suhail M, Wu P-C. Enhancement of the topical bioavailability and skin whitening effect of genistein by using microemulsions as drug delivery carriers. Pharmaceuticals. 2021;14(12):1233. https://doi.org/10.3390/ph14121233
45. Abdul-Aziz BI, Rajab NA. Preparation and in-vitro evaluation of mucoadhesive clotrimazole vaginal hydrogel. Iraqi J Pharm Sci. 2014;23:1-7.
46. Navti PD, Pandey A, Nikam AN, Padya BS, Kalthur G, Koteshwara KB, et al. Ionic liquids assisted topical drug delivery for permeation enhancement: Formulation strategies, biomedical applications, and toxicological perspective. AAPS PharmSciTech. 2022;23(5):161. https://doi.org/10.1208/s12249-022-02313-w
47. Agatemor C, Ibsen KN, Tanner EEL, Mitragotri S. Ionic liquids for addressing unmet needs in healthcare. Bioeng. Transl Med. 2018;3(1):7-25. https://doi.org/10.1002/btm2.10083
48. Zhang Y, Liu C, Wang J, Ren S, Song Y, Quan P, et al. Ionic liquids in transdermal drug delivery system: Current applications and future perspectives. Chinses Chem Lett. 2023;34(3):107631. https://doi.org/10.1016/j.cclet.2022.06.054
49. Sadaf A, Sinha R, Ekka MK. Ionic liquid-mediated skin technologies: Recent advances and prospects. Curr. Res. Biotechnol. 2022. https://doi.org/10.1016/j.crbiot.2022.10.005
50. Beaven E, Kumar R, Ahn JM, Mendoza H, Sutradhar SC, Choi W, et al. Potential of Ionic liquids to overcome physical and biological barriers to enable oral and topical administration. Adv. Drug Deliv. Rev. 2023:115157. https://doi.org/10.1016/j.addr.2023.115157
51. Yu Y-Q, Yang X, Wu X-F, Fan Y-B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Front. bioeng. biotechnol. 2021;9:646554. https://doi.org/10.3389/fbioe.2021.646554
52. Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release. 2022;351:361-80. https://doi.org/10.1016/j.jconrel.2022.09.025
53. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2019;18(1):19-40. https://doi.org/10.1038/nrd.2018.183
54. Agatemor C, Ibsen KN, Tanner EE, Mitragotri S. Ionic liquids for addressing unmet needs in healthcare. Bioeng. Transl Med. 2018;3(1):7–25. https://doi.org/10.1002/btm2.10083
55. Lim GS, Jaenicke S, Klähn M. How the spontaneous insertion of amphiphilic imidazolium-based cations changes biological membranes: A molecular simulation study. Phys Chem Chem Phys. 2015;17(43):29171–29183. https://doi.org/10.1039/C5CP04806K