Characterization and Animal Skin Irritations Investigation of Vemurafenib Microemulsion-Based Hydrogel Using Oily Ionic Liquid

Main Article Content

Mohammed J. Neamah
Entidhar J. Al- Akkam

Abstract





Cutaneous melanoma accounts for a yearly mortality rate of 55,500 persons. The use of oral small-molecule kinase inhibitors, specifically targeting BRAFv600, has been licensed as the principal treatment strategy for managing both locally progressed and metastatic presentations of the condition. Approximately 30% of people on vemurafenib, a BRAFv600 inhibitor, have side effects when are taken orally. Objective: This research was attempted to develop a vemurafenib microemulsion by substituting conventional oil phases with ionic liquids (ILs). The microemulsions were created by dissolving vemurafenib in a combination of ionic liquid (1-Butyl-3-methylimidazolium hexafluorophosphate and 1-Octyl-3-methylimidazolium hexafluorophosphate) and surfactant (Triton x-100). Multiple tests were conducted to measure physical stability, pH determination, content homogeneity examination, and in vitro medicine release analysis.  Four formulations of Vemurafenib microemulsions successfully met all criteria in the microemulsion characterisation and assessment tests. The droplet sizes in these microemulsions fell inside the range of microemulsions, which is less than 200 nm. They were then used to create microemulsion-based hydrogels, employing Carbamer 340 as a gelling agent by conducting a simple mixing method. Hydrogels formed from microemulsions containing 1-Octyl-3-methylimidazolium hexafluorophosphate demonstrated the ability to form clear hydrogels with desirable consistency. Regarding Ex-vivo permeability study and skin deposition the permeability profiles of GOT3 formula exhibits a permeability measurement of 33569± 344 mP.s at 6 rpm, whereas GOT4 demonstrates a permeability measurement of 54723± 380 mP.s at 6 rpm. During the skin irritation test, there was no apparent erythema and edema were observed when compared to the negative group. This may indicate that the designed microemulsion-based gel formulation demonstrates good biocompatibility with skin tissue. Topical delivery of vemurafenib is a promising route of drug administration to melanoma skin. Ionic liquids (ILs) have permeation-enhancing properties with either hydrophilic or lipophilic characteristics‎‎‎‎‎.





Downloads

Download data is not yet available.

Article Details

How to Cite
Characterization and Animal Skin Irritations Investigation of Vemurafenib Microemulsion-Based Hydrogel Using Oily Ionic Liquid. (2024). The Iraqi Journal of Veterinary Medicine, 48(1), 81-92. https://doi.org/10.30539/8z83dp63
Section
Articles

How to Cite

Characterization and Animal Skin Irritations Investigation of Vemurafenib Microemulsion-Based Hydrogel Using Oily Ionic Liquid. (2024). The Iraqi Journal of Veterinary Medicine, 48(1), 81-92. https://doi.org/10.30539/8z83dp63

References

‎1.‎ Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer ‎R, Hauschild A, et al. Melanoma. The Lancet. 2018;392(10151):971-‎‎984. https://doi.org/10.1016/S0140-6736(18)31559-9

‎2.‎ Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. ‎Combined vemurafenib and cobimetinib in BRAF-mutated ‎melanoma. N Engl J Med. 2014;371(20):1867-1876. ‎‎https://doi.org/10.1056/NEJMoa1408868

‎3.‎ Chapman PB, Robert C, Larkin J, Haanen JB, Ribas A, Hogg D, et al. ‎Vemurafenib in patients with BRAFV600 mutation-positive ‎metastatic melanoma: final overall survival results of the ‎randomized BRIM-3 study. Ann. Oncol. 2017;28(10):2581-2587. ‎‎https://doi.org/10.1093/annonc/mdx339

‎4.‎ Spengler EK, Kleiner DE, Fontana RJ. Vemurafenib‐induced ‎granulomatous hepatitis. Hepatology. 2017;65(2):745-748.‎ https://doi.org/10.1002/hep.28692

‎5.‎ Almajidi YQ, Maraie NK, Raauf AMR. Utilization of solid in oil ‎nanodispersion to prepare a topical vemurafenib as potential ‎delivery system for skin melanoma. Appl Nanosci. ‎‎2023;13(4):2845-2856. https://doi.org/10.1007/s13204-021-02158-y

‎6.‎ Szumała P, Macierzanka A. Topical delivery of pharmaceutical and ‎cosmetic macromolecules using microemulsion systems. Int. J. ‎Pharm. 2022;615:121488. https://doi.org/10.1016/j.ijpharm.2022.121488

‎7.‎ Al-Rubaye RA, Al-Kinani KK. Formulation and evaluation of ‎prednisolone acetate microemulsion ocular gel. Egy J Hosp Med. ‎‎2023;90(1):1744-1751. https://doi.org/10.21608/ejhm.2023.284303

‎8.‎ Somasundaran P, editors. Encyclopedia of surface and colloid ‎science, 2nd edition; CRC Pr I Llc;United states. 2006. 2372 p.‎

‎9.‎ Prat D, Hayler J, Wells A. A survey of solvent selection guides. Green ‎Chem. 2014;16(10):4546-4551. https://doi.org/10.1039/C4GC01149J

‎10.‎ Blacklock KL, van der Weyden L. Advances in understanding ‎spontaneously occurring melanoma in animals. Vet. Sci. ‎‎2023;10(3):210. https://doi.org/10.3390/vetsci10030210

‎11.‎ Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, et ‎al. Nanotechnology addressing cutaneous melanoma: The Italian ‎landscape. Pharmaceutics. 2021;13(10):1617. ‎‎https://doi.org/10.3390/pharmaceutics13101617

‎12.‎ Ha L, Noonan FP, De Fabo EC, Merlino G. Animal models of ‎melanoma. J Investig Dermatol Symp Proc. 2005;10:86-88. ‎‎https://doi.org/10.1111/j.1087-0024.2005.200409.x

‎13.‎ Farooq SU, Kumar DS, Shahid AA. Formulation and Evaluation of ‎Vitamin D3 (Cholecalciferol) Self-Nanoemulsifying Drug Delivery ‎Systems for Enhancing Solubility. Int J Pharm Biol Sci. ‎‎20199(3):587-598. 10.21276/ijpbs.2019.9.3.76‎

‎14.‎ Hamed SB, Abd Alhammid SN. Formulation and characterization of ‎felodipine as an oral nanoemulsions. Iraqi J. Pharm. Sci. ‎‎2021;30(1):209-217. https://doi.org/10.31351/vol30iss1pp209-217

‎15.‎ Naeem M. Microemulsion and microemulsion based gel of Zaleplon ‎for transdermal delivery: Preparation, optimization, and ‎evaluation. Acta Pol Phar-Drug Res. 2019;76(3):543-561. ‎‎https://doi.org/10.32383/appdr/101663‎

‎16.‎ Hajjar B, Zier K-I, Khalid N, Azarmi S, Löbenberg R. Evaluation of a ‎microemulsion-based gel formulation for topical drug delivery of ‎diclofenac sodium. J Pharm Investig. 2018;48:351-362. ‎‎https://doi.org/10.1007/s40005-017-0327-7‎

‎17.‎ Tiwari N, Sivakumar A, Mukherjee A, Chandrasekaran N. Enhanced ‎antifungal activity of Ketoconazole using rose oil based novel ‎microemulsion formulation. J Drug Deliv Sci Technol. 2018;47:434-‎‎444. https://doi.org/10.1016/j.jddst.2018.07.007

‎18.‎ Hammodi ID, Abd Alhammid SN. Preparation and characterization ‎of topical letrozole nanoemulsion for breast cancer. Iraqi J. Pharm. ‎Sci. 2020;29(1):195-206. https://doi.org/10.31351/vol29iss1pp195-206

‎19.‎ Basheer HS, Noordin MI, Ghareeb MM. Characterization of ‎microemulsions prepared using isopropyl palmitate with various ‎surfactants and cosurfactants. Trop J Pharm Res. 2013;12(3):305-‎‎310. https://doi.org/10.4314/tjpr.v12i3.5

‎20.‎ Thakkar H, Nangesh J, Parmar M, Patel D. Formulation and ‎characterization of lipid-based drug delivery system of raloxifene-‎microemulsion and self-microemulsifying drug delivery system. J. ‎Pharm Bioallied Sci. 2011;3(3):442. https://doi.org/10.4103/0975-7406.84463

‎21.‎ Yadav V, Jadhav P, Kanase K, Bodhe A, Dombe S. Preparation and ‎evaluation of microemulsion containing antihypertensive drug. Int ‎J Appl Pharm. 2018;10(5):138-146. https://doi.org/10.22159/ijap.2018v10i5.27415

‎22.‎ Iradhati AH, Jufri M. Formulation and physical stability test of ‎griseofulvin microemulsion gel. Int J Appl Pharm. 2017;9:23-26. https://doi.org/10.22159/ijap.2017.v9s1.22_27

‎23.‎ Ghareeb MM. Formulation and characterization of isradipine as ‎oral nanoemulsion. Iraqi J Pharm Sci. 2020;29(1):143-153. ‎‎https://doi.org/10.31351/vol29iss1pp143-153

‎24.‎ Liu D, Lu H, Zhang Y, Zhu P, Huang Z. Conversion of a surfactant-‎based microemulsion to a surfactant-free microemulsion by CO2. ‎Soft Matter. 2019;15(3):462-469. https://doi.org/10.1039/C8SM02444H

‎25.‎ Ali FR, Shoaib MH, Yousuf RI, Ali SA, Imtiaz MS, Bashir L, et al. ‎Design, development, and optimization of dexibuprofen ‎microemulsion based transdermal reservoir patches for controlled ‎drug delivery. Biomed Res. Int. 2017;17(1):1-15. ‎‎https://doi.org/10.1155/2017/4654958

‎26.‎ Dawood NM, Abdul-Hammid SN, Hussein AA. Formulation and ‎characterization of lafutidine nanosuspension for oral drug ‎delivery system. Int J Appl Pharm. 2018;10(2):20-30. https://doi.org/10.22159/ijap.2018v10i2.23075

‎27.‎ Khullar R, Kumar D, Seth N, Saini S. Formulation and evaluation of ‎mefenamic acid emulgel for topical delivery. Saudi Pharm J. ‎‎2012;20(1):63-67. https://doi.org/10.1016/j.jsps.2011.08.001

‎28.‎ Pranali S, Charushila S, Sayali C, Namrata M. Design and ‎characterisation of emulgel of an antifungal drug. J. Pharm. Res. ‎‎2019;11(6):2357-2361.‎

‎29.‎ Jaber SA, Sulaiman HT, Rajab NA. Preparation, characterization and ‎in-vitro diffusion study of different topical flurbiprofen semisolids. ‎IJDDT. 2020;10(1):81-87. https://doi.org/10.25258/ijddt.10.1.12

‎30.‎ Sabri LA, Sulayman HT, Khalil YI. An investigation release and ‎rheological properties of miconazole nitrate from Emulgel. Iraqi J ‎Pharm Sci. 2009;18(2):26-31.‎ https://doi.org/10.31351/vol18iss2pp26-31

‎31.‎ Tung N-T, Vu V-D, Nguyen P-L. DoE-based development, ‎physicochemical characterization, and pharmacological evaluation ‎of a topical hydrogel containing betamethasone dipropionate ‎microemulsion. Colloids and Surfaces B: Biointerfaces. ‎‎2019;181:480-488. https://doi.org/10.1016/j.colsurfb.2019.06.002

‎32.‎ Swatloski RP, Visser AE, Reichert WM, Broker GA, Farina LM, ‎Holbrey JD, et al. On the solubilization of water with ethanol in ‎hydrophobic hexafluorophosphate ionic liquids. Green Chem. ‎‎2002;4(2):81-87. https://doi.org/10.1039/b108905f

‎33.‎ Smail SS, Ghareeb MM, Omer HK, Al-Kinani AA, Alany RG. Studies on ‎surfactants, cosurfactants, and oils for prospective use in ‎formulation of ketorolac tromethamine ophthalmic ‎nanoemulsions. Pharmaceutics. 2021;13(4):467. ‎‎https://doi.org/10.3390/pharmaceutics13040467

‎34.‎ Zheng Y, Eli W. Study on the polarity of ‎bmimPF6/Tween80/toluene microemulsion characterized by UV-‎visible spectroscopy. J Dispersion Sci Technol. 2009;30(5):698-‎‎703. https://doi.org/10.1080/01932690802553890

‎35.‎ Safavi A, Maleki N, Farjami F. Phase behavior and characterization ‎of ionic liquids based microemulsions. Colloids and Surfaces A: ‎Physicochem Eng Aspects. 2010;355(1-3):61-66.‎ https://doi.org/10.1016/j.colsurfa.2009.11.036

‎36.‎ Ryu K-A, Park PJ, Kim S-B, Bin B-H, Jang D-J, Kim ST. Topical ‎delivery of coenzyme Q10-loaded microemulsion for skin ‎regeneration. Pharmaceutics. 2020;12(4):332.‎ https://doi.org/10.3390/pharmaceutics12040332

‎37.‎ Łuczak J, Hupka J. Studies on formation and percolation in ionic ‎liquids/TX-100/water microemulsions. J Mol Liq. 2014;199:552-‎‎558.‎https://doi.org/10.1016/j.molliq.2014.08.028

‎38.‎ Murthy SN, Shivakumar HN. Topical and transdermal drug ‎delivery. Handbook of non-invasive drug delivery systems: ‎William Andrew, New York, US; 2010. p. 1-36. ‎‎https://doi.org/10.1016/B978-0-8155-2025-2.10001-0

‎39.‎ Bernkop-Schnürch A, Jalil A. Do drug release studies from SEDDS ‎make any sense? J Control Release. 2018;271:55-59. https://doi.org/10.1016/j.jconrel.2017.12.027

‎40.‎ Pal N, Kumar S, Bera A, Mandal A. Phase behaviour and ‎characterization of microemulsion stabilized by a novel ‎synthesized surfactant: Implications for enhanced oil recovery. ‎Fuel. 2019;235:995-1009. https://doi.org/10.1016/j.fuel.2018.08.100

‎41.‎ Joshi SC. Sol-gel behavior of hydroxypropyl methylcellulose ‎‎(HPMC) in ionic media including drug release. Materials. ‎‎2011;4(10):1861-905. https://doi.org/10.3390/ma4101861

‎42.‎ ALEXANDER I, KRASNYUK II. Dermatologic gels spreadability ‎measuring methods comparative study. Int J Appl Pharm. ‎‎2022;14(1):164-168. https://doi.org/10.22159/ijap.2022v14i1.41267

‎43.‎ Nikumbh KV, Sevankar SG, Patil MP. Formulation development, in ‎vitro and in vivo evaluation of microemulsion-based gel loaded ‎with ketoprofen. Drug Deliv. 2015;22(4):509-515. ‎‎https://doi.org/10.3109/10717544.2013.859186

‎44.‎ Vu QL, Fang C-W, Suhail M, Wu P-C. Enhancement of the topical ‎bioavailability and skin whitening effect of genistein by using ‎microemulsions as drug delivery carriers. Pharmaceuticals. ‎‎2021;14(12):1233. https://doi.org/10.3390/ph14121233

‎45.‎ Abdul-Aziz BI, Rajab NA. Preparation and in-vitro evaluation of ‎mucoadhesive clotrimazole vaginal hydrogel. Iraqi J Pharm Sci. ‎‎2014;23:1-7.‎

‎46.‎ Navti PD, Pandey A, Nikam AN, Padya BS, Kalthur G, Koteshwara ‎KB, et al. Ionic liquids assisted topical drug delivery for permeation ‎enhancement: Formulation strategies, biomedical applications, and ‎toxicological perspective. AAPS PharmSciTech. 2022;23(5):161. ‎‎https://doi.org/10.1208/s12249-022-02313-w

‎47.‎ Agatemor C, Ibsen KN, Tanner EEL, Mitragotri S. Ionic liquids for ‎addressing unmet needs in healthcare. Bioeng. Transl Med. ‎‎2018;3(1):7-25. https://doi.org/10.1002/btm2.10083

‎48.‎ Zhang Y, Liu C, Wang J, Ren S, Song Y, Quan P, et al. Ionic liquids in ‎transdermal drug delivery system: Current applications and future ‎perspectives. Chinses Chem Lett. 2023;34(3):107631. ‎‎https://doi.org/10.1016/j.cclet.2022.06.054

‎49.‎ Sadaf A, Sinha R, Ekka MK. Ionic liquid-mediated skin technologies: ‎Recent advances and prospects. Curr. Res. Biotechnol. 2022. ‎‎https://doi.org/10.1016/j.crbiot.2022.10.005

‎50.‎ Beaven E, Kumar R, Ahn JM, Mendoza H, Sutradhar SC, Choi W, et al. ‎Potential of Ionic liquids to overcome physical and biological ‎barriers to enable oral and topical administration. Adv. Drug Deliv. ‎Rev. 2023:115157. https://doi.org/10.1016/j.addr.2023.115157

‎51.‎ Yu Y-Q, Yang X, Wu X-F, Fan Y-B. Enhancing permeation of drug ‎molecules across the skin via delivery in nanocarriers: novel ‎strategies for effective transdermal applications. Front. bioeng. ‎biotechnol. 2021;9:646554. https://doi.org/10.3389/fbioe.2021.646554

‎52.‎ Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. ‎Overcoming skin barriers through advanced transdermal drug ‎delivery approaches. J Control Release. 2022;351:361-80. ‎‎https://doi.org/10.1016/j.jconrel.2022.09.025

‎53.‎ Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery ‎strategies for biologics. Nat Rev Drug Discov. 2019;18(1):19-40. https://doi.org/10.1038/nrd.2018.183

‎54.‎ Agatemor C, Ibsen KN, Tanner EE, Mitragotri S. Ionic liquids for ‎addressing unmet needs in healthcare. Bioeng. Transl Med. ‎‎2018;3(1):7–25. https://doi.org/10.1002/btm2.10083

‎55.‎ Lim GS, Jaenicke S, Klähn M. How the spontaneous insertion of ‎amphiphilic imidazolium-based cations changes biological ‎membranes: A molecular simulation study. Phys Chem Chem Phys. ‎‎2015;17(43):29171–29183. https://doi.org/10.1039/C5CP04806K

Similar Articles

You may also start an advanced similarity search for this article.