Frovatriptan succinate intranasal delivery for brain targeting – in vivo study.
Main Article Content
Abstract
Muco-adhesive gel formulations are advantageous in extending the stay at the nasal absorption place, promoting drug absorption. Frovatriptan succinate (FVT) exhibits a 35% oral bioavailability and undergoes hepatic metabolism, making it a viable candidate for nasal delivery. This study aimed to assess novel FVT intranasal formulation for brain targeting in rat animal models. A total of 78 female rats (Rattus norvegicus domestica, Wister albino rats) were randomly divided into three groups: group A (considered a negative control), group B (includes 36 rats given FVT IV solution), and group C (includes 36 rats given FVT binary ethosome in situ gel intranasally). Drug levels in plasma and brain tissue were measured using HPLC methods. In all periods, for both brain tissue concentrations of FVT and the brain-to-plasma ratio of FVT, it was significantly higher in Group C compared to Group B. Nasal administration of FVT showed higher brain Tmax, Cmac, and AUC compared to IV administration, with 239.83% higher accumulation of FVT when nasal formulation used compared to IV administration. In conclusion, in situ gel has demonstrated its efficacy in facilitating the delivery of frovatriptan succinate via the nasal route. The convenience of the administration process, combined with reduced frequency of administration, contributes to improved patient adherence.
Received : 09 November 2023
Revised : 11 November 2023
Accepted : 12 December 2023
Published : 28 December 2023
Downloads
Article Details
How to Cite
References
1. Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache. 2001;41(7):646-657. 10.1046/j.1526-46https://doi.org/10.1046/j.1526-4610.2001.041007646.x
Ashina M, Katsarava Z, Do TP, Buse DC, Pozo-Rosich P, Özge A, et al. Migraine: epidemiology and systems of care. Lancet. 2021;397(10283):1485-1495. https://doi.org/10.1016/S0140-6736(20)32160-7
Stewart WF, Shechter A, Rasmussen BK. Migraine prevalence. A review of population-based studies. Neurology. 1994;44(6 Suppl 4):S17-S23.
Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68(5):343-339.
https://doi.org/10.1212/01.wnl.0000252808.97649.21
Moini J, Logalbo A, Schnellmann JG. Chapter 17 - Pharmacology of migraines. In: Moini J, Logalbo A, Schnellmann JG, editors. Neuropsychopharmacology: Academic Press; 2023. p. 287-301.
https://doi.org/10.1016/B978-0-323-95974-2.00019-0
Stovner LJ, Nichols E, Steiner TJ, Abd-Allah F, Abdelalim A, Al-Raddadi RM, et al. Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):954-976.
https://doi.org/10.1016/0022-3956(88)90076-3
Merikangas KR, Risch NJ, Merikangas JR, Weissman MM, Kidd KK. Migraine and depression: association and familial transmission. J Psychiatr Res. 1988;22(2):119-129.
https://doi.org/10.1016/S1474-4422(18)30322-3
Bigal ME, Serrano D, Reed M, Lipton RB. Chronic migraine in the population: burden, diagnosis, and satisfaction with treatment. Neurology. 2008;71(8):559-566.
https://doi.org/10.1212/01.wnl.0000323925.29520.e7
Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R. Lost productive time and cost due to common pain conditions in the US workforce. JAMA. 2003;290(18):2443-2454.
https://doi.org/10.1001/jama.290.18.2443
Schwedt TJ. Chronic migraine. BMJ (Clinical research ed). 2014;348:g1416.
https://doi.org/10.1136/bmj.g1416
Torres-Ferrús M, Ursitti F, Alpuente A, Brunello F, Chiappino D, de Vries T, et al. From transformation to chronification of migraine: pathophysiological and clinical aspects. J Headache Pain. 2020;21(1):42.
https://doi.org/10.1186/s10194-020-01111-8
Schwedt TJ, Dodick DW. Advanced neuroimaging of migraine. Lancet Neurol. 2009;8(6):560-568. https://doi.org/10.1016/S1474-4422(09)70107-3
Aurora SK. Is chronic migraine one end of a spectrum of migraine or a separate entity? Cephalalgia. 2009;29(6):597-605. https://doi.org/10.1111/j.1468-2982.2008.01811.x
Natoli JL, Manack A, Dean B, Butler Q, Turkel CC, Stovner L, et al. Global prevalence of chronic migraine: a systematic review. Cephalalgia. 2010;30(5):599-609.
https://doi.org/10.1111/j.1468-2982.2009.01941.x
Ibrahim WW, Al-Naddawi AM, Fawzi HA. Role of maternal serum glycodelin as predictor of ectopic pregnancy in first trimester. Int J Women’s Health Reprod Sci. 2019;7(4):467-470.
https://doi.org/10.15296/ijwhr.2019.77
Ali MMM, Humadi SA, Al-Jaff AN. Clinical evaluation of melatonin alone and in combination with pizotifen in the prophylaxis of migraine. Iraqi J Pharm Sci. 2007;16(1):1-7.
https://doi.org/10.31351/vol16iss1pp1-7
Sherafudeen SP, Vasantha PV. Development and evaluation of in situ nasal gel formulations of loratadine. Res Pharm Sci. 2015;10(6):466-476.
Sulaiman HT, Jabir SA, Al-Kinani KK. Investigating the effect of different grades and concentrations of ph-sensitive polymer on preparation and characterization of lidocaine hydrochloride as in situ gel buccal spray. Asian J Pharm Clin Res. 2018;11(11):401-407. https://doi.org/10.22159/ajpcr.2018.v11i11.28492
Strassman AM, Burstein R. A new animal model of headache: Ongoing pain vs stimulus-evoked hypersensitivity. Cephalalgia. 2013;33(13):1073-1074. https://doi.org/10.1177/0333102413491029
Sufka KJ, Staszko SM, Johnson AP, Davis ME, Davis RE, Smitherman TA. Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J Headache Pain. 2016;17:40.
https://doi.org/10.1186/s10194-016-0624-y
Melo-Carrillo A, Lopez-Avila A. A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia. 2013;33(13):https://doi.org/10.1177/0333102413486320
Malick A, Jakubowski M, Elmquist JK, Saper CB, Burstein R. A neurohistochemical blueprint for pain-induced loss of appetite. Proc Natl Acad Sci USA. 2001;98(17):9930-9935.
https://doi.org/10.1073/pnas.171616898
Shawkat AJ, Jwaid AH, Marzouq Awad G, Adnan Fawzi H. Evaluation of osteopathy in patients with beta-thalassemia major using different iron chelation therapies. Asian J Pharm Clin Res. 2018;11(11):467-471. https://doi.org/10.22159/ajpcr.2018.v11i11.29079
Plessas IN, Volk HA, Kenny PJ. Migraine-like Episodic Pain Behavior in a Dog: Can Dogs Suffer from Migraines? J Vet Intern Med. 2013;27(5):1034-1040. https://doi.org/10.1111/jvim.12167
Bergerot A, Holland PR, Akerman S, Bartsch T, Ahn AH, MaassenVanDenBrink A, et al. Animal models of migraine: looking at the component parts of a complex disorder. Eur J Neurosci. 2006;24(6):1517-1534. https://doi.org/10.1111/j.1460-9568.2006.05036.x
Eikermann-Haerter K, Moskowitz MA. Animal models of migraine headache and aura. Curr Opin Neurol. 2008;21(3):294-300. https://doi.org/10.1097/WCO.0b013e3282fc25de
De Vries P, Villalón CM, Saxena PR. Pharmacological aspects of experimental headache models in relation to acute antimigraine therapy. Eur J Pharmacol. 1999;375(1-3):61-74.
https://doi.org/10.1016/S0014-2999(99)00197-1
Bowyer SM, Aurora KS, Moran JE, Tepley N, Welch KM. Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann Neurol. 2001;50(5):582-587.
https://doi.org/10.1002/ana.1293
Tai J, Han M, Lee D, Park IH, Lee SH, Kim TH. Different Methods and Formulations of Drugs and Vaccines for Nasal Administration. Pharmaceutics. 2022;14(5).
https://doi.org/10.3390/pharmaceutics14051073
Jadhav RK, Gambhire NM, Shaikh MI, Kadam JV, Pisal SS. Nasal Drug Delivery System-Factors Affecting and Applications. Current Drug Therapy. 2007;2(1):27-38. https://doi.org/10.2174/157488507779422374
Jassim Z, Jasim E. A review on strategies for improving nasal drug delivery systems. Drug Invention Today. 2018;10:2857-2864.
Younis YK, Abd Alhammid SN. Intranasal Oleic acid-based nanoemulsion of Diazepam: design, formulation and in-vitro evaluation. J Res Pharm. 2023;27(2):529-543. http://dx.doi.org/10.29228/jrp.335
Dey S, Mahanti B, Mazumder B, Dasgupta S. Nasal drug delivery: An approach of drug delivery through nasal route. Der Pharmacia Sinica. 2011;2:94-106.
Cunha S, Amaral MH, Lobo JMS, Silva AC. Lipid Nanoparticles for Nasal/Intranasal Drug Delivery. Crit Rev Ther Drug Carrier Syst. 2017;34(3):257-82.
Swatantra K.S. Kushwaha RKK, A.K. Rai. Advances in nasal trans-mucosal drug delivery: ssue : 7. 21-8 p.
Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57(11):1640-65.
Singh A, Singh A, Madhv N. Nasal cavity, a promising transmucosal platform for drug delivery and research approaches from nasal to brain targetting. Journal of drug delivery and therapeutics. 2012;2(3).
Al-anbagi MS, Rajab NA, Khalil YI. Preparation and characterization of timed drug delivery system of sumatriptan using natural polymers. Iraqi J Pharm Sci. 2018;27(1):89-99.
Alkufi HK, Kassab HJ. Formulation and evaluation of sustained release sumatriptan mucoadhesive intranasal in-situ gel. Iraqi J Pharm Sci. 2019;28(2):95-104.
Moore J. Frovatriptan. In: Enna SJ, Bylund DB, editors. xPharm: The Comprehensive Pharmacology Reference. 1st ed. New York: Elsevier; 2007. p. 1-5.
Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215-22.
Salih OS, Ghareeb MM. Formulation and In-vitro Evaluation of Thermosensitive Ciprofloxacin HCL In-situ Gel for Local Nasal Infection. IJDDT. 2021;11(4):1295-1301.
Yousif HS, Khalil YI. In situ gelling formulation of Naproxen for oral sustained delivery system. Iraqi J Pharm Sci. 2009;18(1):13-20.
Adnan M, Nief R, Abd-Al Hameed SN, Kharaba HA. Preparation and In-Vitro Evaluation of Floating Oral In-Situ Gel of Montelukast Sodium (Conference Paper). Iraqi J Pharm Sci. 2022;31:162-7.
Zaki NM, Awad GA, Mortada ND, Abd Elhady SS. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci. 2007;32(4-5):296-307.
HB N, Bakliwal S, Pawar S. In-situ gel: new trends in controlled and sustained drug delivery system. International Journal of PharmTech Research 2010;2(2):1398-408.
Nief RA, Tamer MA, Abd Alhammid SN. Mucoadhesive oral in situ gel of itraconazole using pH-sensitive polymers: Preparation, and in vitro characterization, release and rheology study. Drug Invention Today. 2019;11(6):1450-1455.
Jasim E. Applying of a modified and validated high-performance liquid chromatographic/ultraviolet method for quantification of cetirizine in human plasma for pharmacokinetics studies. Drug Invention Today. 2020;14(1):45-55.
Alabdly A, Kassab HJ. Formulation Variables Effect on Gelation Temperature of Nefopam Hydrochloride intranasal in Situ Gel (Conference Paper). Iraqi J Pharm Sci. 2022;31(Suppl):32-44.
Raheema DA, Kassab HJ. Preparation and in-vitro Evaluation of Secnidazole as Periodontal In-situ Gel for Treatment of Periodontal Disease. Iraqi J Pharm Sci. 2022;31(2):50-61.
https://doi.org/10.31351/vol31iss2pp50-61
Rozha SO, Hawraz FM, Harseen MR, Hassan AH, Rebin KM, Dyary HO, et al. Green Walnut Husk Ameliorating the Adverse Effects Induced by High Fat Diet in Rats. Iraqi J Vet Med. 2021;45(2):65-73. https://doi.org/10.30539/ijvm.v45i2.1286
Azeez OH. Evaluation of Some Male and Female Rats’ Reproductive Hormones Following Administration of Aspartame with or Without Vitamin C or E. Iraqi J Vet Med. 2021;45(2):14-20.
https://doi.org/10.30539/ijvm.v45i2.1256
Yaribeygi H, Hemmati MA, Nasimi F, Maleki M, Jamialahmadi T, Reiner I, et al. Sodium Glucose Cotransporter-2 Inhibitor Empagliflozin Increases Antioxidative Capacity and Improves Renal Function in Diabetic Rats. J Clin Med. 2023;12(11):3815. https://doi.org/10.3390/jcm12113815
Underwood W, Anthony R. AVMA guidelines for the euthanasia of animals: 2020 edition. Retrieved on March. 2020;2013(30):2020-1.
Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. Faseb J. 2008;22(3):659-661. https://doi.org/10.1096/fj.07-9574LSF
Zheng H, Xia Y, Qu S, Fan L, Zhang J, Ma Z, et al. Pharmacokinetic Study of Frovatriptan Succinate Tablet After Single and Multiple Oral Doses in Chinese Healthy Subjects. Drug Des Devel Ther. 2021;15:2961-2968. https://doi.org/10.2147/DDDT.S308958
Alshehri S, Hussain A, Altamimi MA, Ramzan M. In vitro, ex vivo, and in vivo studies of binary ethosomes for transdermal delivery of acyclovir: A comparative assessment. J Drug Delivery Sci Technol. 2021;62:102390. https://doi.org/10.1016/j.jddst.2021.102390
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-191.
https://doi.org/10.3758/BF03193146
Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303-306. https://doi.org/10.4103/0976-500X.119726
Festing MFW. Design and Statistical Methods in Studies Using Animal Models of Development. ILAR J. 2006;47(1):5-14. https://doi.org/10.1093/ilar.47.1.5
Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. Ilar J. 2002;43(4):244-258. https://doi.org/10.1093/ilar.43.4.244
Aderibigbe BA. In Situ-Based Gels for Nose to Brain Delivery for the Treatment of Neurological Diseases. Pharmaceutics. 2018;10(2):40. https://doi.org/10.3390/pharmaceutics10020040
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int. 2014;2014:869269.https://doi.org/10.1155/2014/869269
Sharifi MS. Treatment of neurological and psychiatric disorders with deep brain stimulation; raising hopes and future challenges. Basic Clin Neurosci. 2013;4(3):266-270.
Deepika D, Dewangan HK, Maurya L, Singh S. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting. J Pharm Sci. 2019;108(2):851-859.
https://doi.org/10.1016/j.xphs.2018.07.013
Shelke S, Pathan I, Shinde G, Agrawal G, Damale M, Chouthe R, et al. Poloxamer-based in situ nasal gel of naratriptan hydrochloride deformable vesicles for brain targeting. BioNanoSci. 2020;10(3):633-648. https://doi.org/10.1007/s12668-020-00767-5
Tekade A, Ghodke P, Patange A, Patil P. Nanostructured cubosomal in situ nasal gel for the treatment of migraine. J Drug Deliv Sci Technol. 2023;87:104797. https://doi.org/10.1016/j.jddst.2023.104797
Garg T, Murthy R, Kumar Goyal A, Arora S, Malik B. Development, optimization & evaluation of porous chitosan scaffold formulation of gliclazide for the treatment of type-2 diabetes mellitus. Drug Deliv Lett. 2012;2(4):251-261. https://doi.org/10.2174/2210304x11202040003