Frovatriptan succinate intranasal delivery for brain targeting – in vivo study.‎

Main Article Content

Mohammed layth hamzah
Hanan Jalal Kassab

Abstract





Muco-adhesive gel formulations are advantageous in extending the stay at the nasal ‎absorption place, promoting drug absorption. Frovatriptan succinate (FVT) exhibits a 35% ‎oral bioavailability and undergoes hepatic metabolism, making it a viable candidate for ‎nasal delivery. This study aimed to assess novel FVT intranasal formulation for brain ‎targeting in rat animal models. A total of 78 female rats (Rattus norvegicus domestica, ‎Wister albino rats) were randomly divided into three groups: group A (considered a ‎negative control), group B (includes 36 rats given FVT IV solution), and group C (includes ‎‎36 rats given FVT binary ethosome in situ gel intranasally). Drug levels in plasma and brain ‎tissue were measured using HPLC methods. In all periods, for both brain tissue ‎concentrations of FVT and the brain-to-plasma ratio of FVT, it was significantly higher in ‎Group C compared to Group B. Nasal administration of FVT showed higher brain Tmax, ‎Cmac, and AUC compared to IV administration, with 239.83% higher accumulation of FVT ‎when nasal formulation used compared to IV administration. In conclusion, in situ gel has ‎demonstrated its efficacy in facilitating the delivery of frovatriptan succinate via the nasal ‎route. The convenience of the administration process, combined with reduced frequency of ‎administration, contributes to improved patient adherence‎‎‎.





Downloads

Download data is not yet available.

Article Details

How to Cite
Frovatriptan succinate intranasal delivery for brain targeting – in vivo study.‎. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 101-109. https://doi.org/10.30539/me2mm152
Section
Articles

How to Cite

Frovatriptan succinate intranasal delivery for brain targeting – in vivo study.‎. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 101-109. https://doi.org/10.30539/me2mm152

References

‎1. Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M. Prevalence and burden ‎of migraine in the United ‎States: data from the American Migraine Study II. Headache. ‎‎2001;41(7):646-657.‎ 10.1046/j.1526-46https://doi.org/10.1046/j.1526-4610.2001.041007646.x

Ashina M, Katsarava Z, Do TP, Buse DC, Pozo-Rosich P, Özge A, et al. Migraine: ‎epidemiology and systems of ‎care. Lancet. 2021;397(10283):1485-1495.‎ https://doi.org/10.1016/S0140-6736(20)32160-7

Stewart WF, Shechter A, Rasmussen BK. Migraine prevalence. A review of ‎population-based studies. ‎Neurology. 1994;44(6 Suppl 4):S17-S23.‎

Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF. Migraine ‎prevalence, disease burden, and ‎the need for preventive therapy. Neurology. ‎‎2007;68(5):343-339.‎

https://doi.org/10.1212/01.wnl.0000252808.97649.21

‎Moini J, Logalbo A, Schnellmann JG. Chapter 17 - Pharmacology of migraines. In: ‎Moini J, Logalbo A, ‎Schnellmann JG, editors. Neuropsychopharmacology: Academic Press; ‎‎2023. p. 287-301.‎

https://doi.org/10.1016/B978-0-323-95974-2.00019-0

Stovner LJ, Nichols E, Steiner TJ, Abd-Allah F, Abdelalim A, Al-Raddadi RM, et al. ‎Global, regional, and national ‎burden of migraine and tension-type headache, 1990-2016: a ‎systematic analysis for the Global Burden of ‎Disease Study 2016. Lancet Neurol. ‎‎2018;17(11):954-976.‎

https://doi.org/10.1016/0022-3956(88)90076-3

Merikangas KR, Risch NJ, Merikangas JR, Weissman MM, Kidd KK. Migraine and ‎depression: association and ‎familial transmission. J Psychiatr Res. 1988;22(2):119-129.‎

https://doi.org/10.1016/S1474-4422(18)30322-3

Bigal ME, Serrano D, Reed M, Lipton RB. Chronic migraine in the population: ‎burden, diagnosis, and ‎satisfaction with treatment. Neurology. 2008;71(8):559-566.‎

https://doi.org/10.1212/01.wnl.0000323925.29520.e7

Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R. Lost productive time and ‎cost due to common pain ‎conditions in the US workforce. JAMA. 2003;290(18):2443-2454.‎

https://doi.org/10.1001/jama.290.18.2443

Schwedt TJ. Chronic migraine. BMJ (Clinical research ed). 2014;348:g1416.‎

https://doi.org/10.1136/bmj.g1416

‎Torres-Ferrús M, Ursitti F, Alpuente A, Brunello F, Chiappino D, de Vries T, et al. ‎From transformation to ‎chronification of migraine: pathophysiological and clinical aspects. ‎J Headache Pain. 2020;21(1):42.‎

https://doi.org/10.1186/s10194-020-01111-8

‎Schwedt TJ, Dodick DW. Advanced neuroimaging of migraine. Lancet Neurol. ‎‎2009;8(6):560-568.‎ https://doi.org/10.1016/S1474-4422(09)70107-3

Aurora SK. Is chronic migraine one end of a spectrum of migraine or a separate ‎entity? Cephalalgia. ‎‎2009;29(6):597-605.‎ https://doi.org/10.1111/j.1468-2982.2008.01811.x

Natoli JL, Manack A, Dean B, Butler Q, Turkel CC, Stovner L, et al. Global ‎prevalence of chronic migraine: ‎a systematic review. Cephalalgia. 2010;30(5):599-609.

https://doi.org/10.1111/j.1468-2982.2009.01941.x

Ibrahim WW, Al-Naddawi AM, Fawzi HA. Role of maternal serum ‎glycodelin as predictor of ‎ectopic pregnancy in first trimester. Int ‎J Women’s Health ‎Reprod Sci. 2019;7(4):467-470.

https://doi.org/10.15296/ijwhr.2019.77

Ali MMM, Humadi SA, Al-Jaff AN. Clinical evaluation of melatonin alone and in ‎combination with pizotifen in ‎the prophylaxis of migraine. Iraqi J Pharm Sci. 2007;16(1):1-7.‎

https://doi.org/10.31351/vol16iss1pp1-7

Sherafudeen SP, Vasantha PV. Development and evaluation of in situ nasal gel ‎formulations of loratadine. Res ‎Pharm Sci. 2015;10(6):466-476.‎

Sulaiman HT, Jabir SA, Al-Kinani KK. Investigating the effect of different grades ‎and concentrations of ph-‎sensitive polymer on preparation and characterization of lidocaine ‎hydrochloride as in situ gel buccal spray. ‎Asian J Pharm Clin Res. 2018;11(11):401-407.‎ https://doi.org/10.22159/ajpcr.2018.v11i11.28492

Strassman AM, Burstein R. A new animal model of headache: Ongoing pain vs ‎stimulus-evoked ‎hypersensitivity. Cephalalgia. 2013;33(13):1073-1074.‎ https://doi.org/10.1177/0333102413491029

Sufka KJ, Staszko SM, Johnson AP, Davis ME, Davis RE, Smitherman TA. ‎Clinically relevant behavioral ‎endpoints in a recurrent nitroglycerin migraine model in rats. ‎J Headache Pain. 2016;17:40.‎

https://doi.org/10.1186/s10194-016-0624-y

Melo-Carrillo A, Lopez-Avila A. A chronic animal model of migraine, induced by ‎repeated meningeal ‎nociception, characterized by a behavioral and pharmacological ‎approach. Cephalalgia. 2013;33(13):https://doi.org/10.1177/0333102413486320

Malick A, Jakubowski M, Elmquist JK, Saper CB, Burstein R. A neurohistochemical ‎blueprint for pain-induced ‎loss of appetite. Proc Natl Acad Sci USA. 2001;98(17):9930-9935.‎

https://doi.org/10.1073/pnas.171616898

Shawkat AJ, Jwaid AH, Marzouq Awad G, Adnan Fawzi H. Evaluation of osteopathy ‎in patients with beta-‎thalassemia major using different iron chelation therapies. Asian J ‎Pharm Clin Res. 2018;11(11):467-471.‎ https://doi.org/10.22159/ajpcr.2018.v11i11.29079

Plessas IN, Volk HA, Kenny PJ. Migraine-like Episodic Pain Behavior in a Dog: Can ‎Dogs Suffer from ‎Migraines? J Vet Intern Med. 2013;27(5):1034-1040.‎ https://doi.org/10.1111/jvim.12167

Bergerot A, Holland PR, Akerman S, Bartsch T, Ahn AH, MaassenVanDenBrink A, ‎et al. Animal models of ‎migraine: looking at the component parts of a complex disorder. ‎Eur J Neurosci. 2006;24(6):1517-1534.‎ https://doi.org/10.1111/j.1460-9568.2006.05036.x

Eikermann-Haerter K, Moskowitz MA. Animal models of migraine headache and ‎aura. Curr Opin Neurol. ‎‎2008;21(3):294-300.‎ https://doi.org/10.1097/WCO.0b013e3282fc25de

De Vries P, Villalón CM, Saxena PR. Pharmacological aspects of experimental ‎headache models in relation to ‎acute antimigraine therapy. Eur J Pharmacol. 1999;375(1-‎‎3):61-74.‎

https://doi.org/10.1016/S0014-2999(99)00197-1

Bowyer SM, Aurora KS, Moran JE, Tepley N, Welch KM. ‎Magnetoencephalographic fields from patients with ‎spontaneous and induced migraine aura. ‎Ann Neurol. 2001;50(5):582-587.‎

https://doi.org/10.1002/ana.1293

Tai J, Han M, Lee D, Park IH, Lee SH, Kim TH. Different Methods and ‎Formulations of Drugs and Vaccines for ‎Nasal Administration. Pharmaceutics. 2022;14(5).‎

https://doi.org/10.3390/pharmaceutics14051073

Jadhav RK, Gambhire NM, Shaikh MI, Kadam JV, Pisal SS. Nasal Drug Delivery ‎System-Factors Affecting and ‎Applications. Current Drug Therapy. 2007;2(1):27-38.‎ https://doi.org/10.2174/157488507779422374

Jassim Z, Jasim E. A review on strategies for improving nasal drug delivery ‎systems. Drug Invention Today. ‎‎2018;10:2857-2864.‎

Younis YK, Abd Alhammid SN. Intranasal Oleic acid-based nanoemulsion of Diazepam: design, formulation and in-vitro evaluation. J Res Pharm. 2023;27(2):529-543. http://dx.doi.org/10.29228/jrp.335

Dey S, Mahanti B, Mazumder B, Dasgupta S. Nasal drug delivery: An approach of ‎drug delivery through nasal ‎route. Der Pharmacia Sinica. 2011;2:94-106.‎

Cunha S, Amaral MH, Lobo JMS, Silva AC. Lipid Nanoparticles for Nasal/Intranasal ‎Drug Delivery. Crit Rev ‎Ther Drug Carrier Syst. 2017;34(3):257-82.‎

Swatantra K.S. Kushwaha RKK, A.K. Rai. Advances in nasal trans-mucosal drug ‎delivery: ssue : 7. 21-8 p.‎

Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: ‎background, applications, trends ‎and future perspectives. Adv Drug Deliv Rev. ‎‎2005;57(11):1640-65.‎

Singh A, Singh A, Madhv N. Nasal cavity, a promising transmucosal platform for ‎drug delivery and research ‎approaches from nasal to brain targetting. Journal of drug ‎delivery and therapeutics. 2012;2(3).‎

Al-anbagi MS, Rajab NA, Khalil YI. Preparation and characterization of timed drug ‎delivery system of ‎sumatriptan using natural polymers. Iraqi J Pharm Sci. 2018;27(1):89-‎‎99.‎

Alkufi HK, Kassab HJ. Formulation and evaluation of sustained release sumatriptan ‎mucoadhesive intranasal ‎in-situ gel. Iraqi J Pharm Sci. 2019;28(2):95-104.‎

Moore J. Frovatriptan. In: Enna SJ, Bylund DB, editors. xPharm: The ‎Comprehensive Pharmacology Reference. ‎‎1st ed. New York: Elsevier; 2007. p. 1-5.‎

Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in ‎nasal drug delivery system. J ‎Adv Pharm Technol Res. 2011;2(4):215-22.‎

Salih OS, Ghareeb MM. Formulation and In-vitro Evaluation of Thermosensitive ‎Ciprofloxacin HCL In-situ Gel ‎for Local Nasal Infection. IJDDT. 2021;11(4):1295-1301.‎

Yousif HS, Khalil YI. In situ gelling formulation of Naproxen for oral sustained ‎delivery system. Iraqi J Pharm ‎Sci. 2009;18(1):13-20.‎

Adnan M, Nief R, Abd-Al Hameed SN, Kharaba HA. Preparation and In-Vitro ‎Evaluation of Floating Oral In-‎Situ Gel of Montelukast Sodium (Conference Paper). Iraqi J ‎Pharm Sci. 2022;31:162-7.‎

Zaki NM, Awad GA, Mortada ND, Abd Elhady SS. Enhanced bioavailability of ‎metoclopramide HCl by ‎intranasal administration of a mucoadhesive in situ gel with ‎modulated rheological and mucociliary ‎transport properties. Eur J Pharm Sci. 2007;32(4-‎‎5):296-307.‎

HB N, Bakliwal S, Pawar S. In-situ gel: new trends in controlled and sustained drug ‎delivery system. ‎International Journal of PharmTech Research 2010;2(2):1398-408.‎

Nief RA, Tamer MA, Abd Alhammid SN. Mucoadhesive oral in situ gel of ‎itraconazole using pH-sensitive ‎polymers: Preparation, and in vitro characterization, release ‎and rheology study. Drug Invention Today. ‎‎2019;11(6):1450-1455.‎

Jasim E. Applying of a modified and validated high-performance liquid ‎chromatographic/ultraviolet method ‎for quantification of cetirizine in human plasma for ‎pharmacokinetics studies. Drug Invention Today. ‎‎2020;14(1):45-55.‎

Alabdly A, Kassab HJ. Formulation Variables Effect on Gelation Temperature of ‎Nefopam Hydrochloride ‎intranasal in Situ Gel (Conference Paper). Iraqi J Pharm Sci. 2022;31(Suppl):32-44.‎

Raheema DA, Kassab HJ. Preparation and in-vitro Evaluation of Secnidazole as ‎Periodontal In-situ Gel for ‎Treatment of Periodontal Disease. Iraqi J Pharm Sci. ‎‎2022;31(2):50-61.‎

https://doi.org/10.31351/vol31iss2pp50-61

Rozha SO, Hawraz FM, Harseen MR, Hassan AH, Rebin KM, Dyary HO, et al. Green ‎Walnut Husk Ameliorating ‎the Adverse Effects Induced by High Fat Diet in Rats. Iraqi ‎J Vet Med. 2021;45(2):65-73.‎ https://doi.org/10.30539/ijvm.v45i2.1286

Azeez OH. Evaluation of Some Male and Female Rats’ Reproductive Hormones ‎Following Administration of ‎Aspartame with or Without Vitamin C or E. Iraqi J Vet Med. 2021;45(2):14-20.‎

https://doi.org/10.30539/ijvm.v45i2.1256

Yaribeygi H, Hemmati MA, Nasimi F, Maleki M, Jamialahmadi T, Reiner I, et al. ‎Sodium Glucose Cotransporter-‎‎2 Inhibitor Empagliflozin Increases Antioxidative Capacity ‎and Improves Renal Function in Diabetic Rats. J ‎Clin Med. 2023;12(11):3815.‎ https://doi.org/10.3390/jcm12113815

Underwood W, Anthony R. AVMA guidelines for the euthanasia of animals: 2020 ‎edition. Retrieved on March. ‎‎2020;2013(30):2020-1.‎

Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies ‎revisited. Faseb J. ‎‎2008;22(3):659-661.‎ https://doi.org/10.1096/fj.07-9574LSF

Zheng H, Xia Y, Qu S, Fan L, Zhang J, Ma Z, et al. Pharmacokinetic Study of ‎Frovatriptan Succinate Tablet After ‎Single and Multiple Oral Doses in Chinese Healthy ‎Subjects. Drug Des Devel Ther. 2021;15:2961-2968.‎ https://doi.org/10.2147/DDDT.S308958

Alshehri S, Hussain A, Altamimi MA, Ramzan M. In vitro, ex vivo, and in vivo ‎studies of binary ethosomes for ‎transdermal delivery of acyclovir: A comparative ‎assessment. J Drug Delivery Sci ‎Technol. 2021;62:102390.‎ https://doi.org/10.1016/j.jddst.2021.102390

Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power ‎analysis program for the ‎social, behavioral, and biomedical sciences. Behav Res Methods. ‎‎2007;39(2):175-191.‎

https://doi.org/10.3758/BF03193146

Charan J, Kantharia ND. How to calculate sample size in animal studies? J ‎Pharmacol Pharmacother. ‎‎2013;4(4):303-306.‎ https://doi.org/10.4103/0976-500X.119726

Festing MFW. Design and Statistical Methods in Studies Using Animal Models of ‎Development. ILAR J. ‎‎2006;47(1):5-14.‎ https://doi.org/10.1093/ilar.47.1.5

Festing MF, Altman DG. Guidelines for the design and statistical analysis of ‎experiments using laboratory ‎animals. Ilar J. 2002;43(4):244-258.‎ https://doi.org/10.1093/ilar.43.4.244

Aderibigbe BA. In Situ-Based Gels for Nose to Brain Delivery for the Treatment of ‎Neurological Diseases. ‎Pharmaceutics. 2018;10(2):40.‎ https://doi.org/10.3390/pharmaceutics10020040

Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. ‎Biomed Res Int. ‎‎2014;2014:869269.https://doi.org/10.1155/2014/869269

Sharifi MS. Treatment of neurological and psychiatric disorders with deep brain ‎stimulation; raising hopes ‎and future challenges. Basic Clin Neurosci. 2013;4(3):266-270.‎

Deepika D, Dewangan HK, Maurya L, Singh S. Intranasal drug delivery of ‎frovatriptan succinate-loaded ‎polymeric nanoparticles for brain targeting. J Pharm Sci. ‎‎2019;108(2):851-859.‎

https://doi.org/10.1016/j.xphs.2018.07.013

Shelke S, Pathan I, Shinde G, Agrawal G, Damale M, Chouthe R, et al. Poloxamer-‎based in situ nasal gel of ‎naratriptan hydrochloride deformable vesicles for brain ‎targeting. BioNanoSci. 2020;10(3):633-648.‎ https://doi.org/10.1007/s12668-020-00767-5

Tekade A, Ghodke P, Patange A, Patil P. Nanostructured cubosomal in situ nasal gel ‎for the treatment of ‎migraine. J Drug Deliv Sci Technol. ‎‎2023;87:104797.‎ https://doi.org/10.1016/j.jddst.2023.104797

Garg T, Murthy R, Kumar Goyal A, Arora S, Malik B. Development, optimization & ‎evaluation of porous ‎chitosan scaffold formulation of gliclazide for the treatment of type-2 ‎diabetes mellitus. Drug Deliv Lett. 2012;2(4):251-261‎. https://doi.org/10.2174/2210304x11202040003

Similar Articles

You may also start an advanced similarity search for this article.