Differentiated Stem Cells Derived from Rabbit Adipose Tissue Exhibited in ‎Vitro Adipogenesis and Osteogenesis

Main Article Content

Dhurgham H Al-Haideri
Hameed A AL-Timmemi

Abstract





The multipotent characteristic of rabbit adipose-derived stem cells makes them available and ‎convenient sources for isolating mesenchymal stem cells. The aim of this study was to assess ‎the differentiation in rabbit adipose-derived stem cells pre-committed to produce several ‎mesenchymal lineages in response to inductive extracellular cues to multipotent stromal cells. ‎Three grams of adipose tissue was taken from a subcutaneous region of the nape of the neck ‎and was carefully isolated to obtain mesenchymal stem cells for expanded by fourth passage. In ‎the 4th passage, active growth of mesenchymal stem cells was observed. Furthermore, the ‎research demonstrated the inherent ability of rabbit MSCs to induce differentiation in ‎osteogenic and adipogenic lineages. These mesenchymal stem cells were successfully isolated ‎from adipose tissue which differentiated into either osteocytes or adipocyte-like cells after 21 ‎and 14 days of culturing in specific osteogenic and adipogenic media, respectively. The ‎remarkable differentiation potential of rabbit mesenchymal stem cells is indicated by ‎mineralized deposition to the osteocytes and lipid droplets accumulated in the cytoplasm lipid ‎vacuoles in the adipocytes‎.





Downloads

Download data is not yet available.

Article Details

How to Cite
Differentiated Stem Cells Derived from Rabbit Adipose Tissue Exhibited in ‎Vitro Adipogenesis and Osteogenesis. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 59-63. https://doi.org/10.30539/ijvm.v47i2.1509
Section
Articles

How to Cite

Differentiated Stem Cells Derived from Rabbit Adipose Tissue Exhibited in ‎Vitro Adipogenesis and Osteogenesis. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 59-63. https://doi.org/10.30539/ijvm.v47i2.1509

References

Ong WK, Sugii S. Adipose-derived stem cells: fatty potentials for ‎therapy. Int J Biochem ‎Cell Biol. 2013;45(6):1083-1086. 10.1016/j.biocel.2013.02.013

Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: ‎tissue localization, ‎characterization, and heterogeneity. Stem Cells Int. ‎‎2012;1-11. 10.1155/2012/812693

Liu H, Wei LK, Jian XF, Huang J, Zou H, Zhang SZ, et al. Isolation, culture and induced ‎differentiation of rabbit mesenchymal stem cells into osteoblasts. Exp Ther Med. ‎‎2018;15(4):3715-3724. 10.3892/etm.2018.5894.

Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid ‎and β-glycerophosphate ‎on the osteogenic differentiation of stem cells ‎in vitro. Stem Cell Res Ther. 2013;4(5):1-7‎. 10.1186/scrt328

Mimeault M, Hauke R, Batra SK. Stem cells: A revolution in therapeutics Recent advances ‎in stem cell biology and their therapeutic applications in regenerative medicine and cancer ‎therapies. Clin Pharmacol Ther. 2007;82(3):252-264. 10.1038/sj.clpt.6100301

Zuk PA, Zhu MI, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from ‎human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228. 10.1089/107632701300062859

‎7. Hayder HA, Ahameed FB. Clinical and Histopathological Study of the Effect of Adipose-‎Derived Mesenchymal Stem Cells on Corneal Neovascularization following Alkali Burn in a ‎Rabbit Model. Arch Razi Inst. 2022;77(5):1715-1721. 10.22092/ARI.2022.357998.2136

Costela-Ruiz VJ, Melguizo-Rodríguez L, Bellotti C, Illescas-Montes R, ‎Stanco D, Arciola ‎CR, et al. Different sources of mesenchymal stem ‎cells for tissue regeneration: a guide to ‎identifying the most favorable ‎one in orthopedics and dentistry applications. Int J Mol Sci. ‎‎‎2022;23(11):6356‎. 10.3390/ijms23116356

Abed AF. Evaluation of midazolam and ketamine preceding by xylazine as general ‎anesthesia in rabbits. Iraqi J. Vet. Med. 2013;37(2):144-148. 10.30539/iraqijvm.v37i2.274

Eesa MJ, Omar RA, Nazhat HH. Evaluation of general anaesthesia by using ‎Propionylpromazine, Xylazine and Ketamine in rabbits. Iraqi J. Vet. Med. 2010;34(1):208-17. 10.30539/iraqijvm.v34i1.681

Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and ‎osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue ‎Eng. 2007;13(6):1291–1298. 10.1089/ten.2006.0275 ‎

Bakhtina A, Tohfafarosh M, Lichtler A, Arinzeh TL. Characterization and differentiation ‎potential of rabbit mesenchymal stem cells for translational regenerative medicine. In Vitro ‎Cell. Dev. Biol. Anim. 2014;50:251-260. 10.1007/s11626-013-9702-5

Al-Timmemi H, Dhurgham H, Zaid A. Efficacy of bone marrow stromal cells implantation ‎on regeneration of peripheral nerve injury in dogs. Am J Res Commun. 2014;2(8):115–130.‎

Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal ‎stem cells. Nat. Rev. Mol. Cell Biol. 2011;12(2):126-31. 10.1038/nrm3049

Dominici ML, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy. ‎‎2006;8(4):315-317. 10.1080/14653240600855905‎

Thirumala S, Gimble JM, Devireddy RV. Evaluation of methylcellulose and dimethyl ‎sulfoxide as the cryoprotectants in a serum-free freezing media for cryopreservation of ‎adipose-derived adult stem cells. Stem Cells Dev. 2010;19(4):513-522.‎ 10.1089/scd.2009.0173

Sowa Y, Imura T, Numajiri T, Takeda K, Mabuchi Y, Matsuzaki Y, et al. Adipose stromal ‎cells contain phenotypically distinct adipogenic progenitors derived from neural crest. PLoS ‎One. 2013;8(12): 1-11. 10.1371/journal.pone.0084206

Lian JB, Stein GS. Development of the osteoblast phenotype: molecular mechanisms ‎mediating osteoblast growth and differentiation. Iowa Orthop J. 1995;15: 118-140. PMID: ‎‎7634023.‎

Essa HH, Jasim HS, Kadhim HA. Immunological and Hematological Response to Local ‎Transplantation of Stem Cells in Injured Radial Nerve of Dogs. Iraqi J. Vet. Med. 2020;44(2):45-‎‎55. 10.30539/ijvm.v44i2.976

Murshed M, Harmey D, Millán JL, McKee MD, Karsenty G. Unique ‎coexpression in ‎osteoblasts of broadly expressed genes accounts for ‎the spatial restriction of ECM ‎mineralization to bone. Genes Dev. ‎‎2005;19(9):1093-1104‎. 10.1101/gad.1276205

Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE. ‎Adhesion to vitronectin ‎and collagen I promotes osteogenic ‎differentiation of human mesenchymal stem cells. J ‎Biomed ‎Biotechnol. 2004;24-34. ‎10.1155/S1110724304306017

Madhu V, Dighe AS, Cui Q, Deal DN. Dual inhibition of activin/nodal/TGF-β and BMP ‎signaling pathways by SB431542 and dorsomorphin induces neuronal differentiation of human ‎adipose derived stem cells. Stem cells international. 2016;1-16.10.1155/2016/1035374

Kwist K, Bridges WC, Burg KJ. The effect of cell passage number on osteogenic and ‎adipogenic characteristics of D1 cells. Cytotechnology. 2016;68(4):1661–1667. 10.1007/s10616-015-9883-8

Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications ‎and biological ‎characterization. Int J Biochem Cell Biol. 2004;36(4):568-584. 10.1016/j.biocel.2003.11.001

Scott MA, Nguyen VT, Levi B, James AW. Current methods of ‎adipogenic differentiation ‎of mesenchymal stem cells. Stem Cells Dev. ‎‎2011;2(10):1793-1804. 10.1089/scd.2011.0040

Al-Mutheffer EA, Reinwald Y, El Haj AJ. Donor variability of ovine bone ‎marrow derived ‎mesenchymal stem cell-implications for cell therapy. ‎Int J Vet Sci Med. 2023;11(1):23-37. 10.1080/23144599.2023.2197393

Kretlow JD, Jin Y-Q, Liu W, Zhang WJ, Hong T-H, Zhou G, et al. Donor ‎age and cell ‎passage affects differentiation potential of murine bone ‎marrow-derived stem cells. BMC Cell ‎Biol. 2008;9 (60):1-13. 10.1186/1471-2121-9-60

Thanoon MG, Eesa MJ, Alkenanny ER. Histopathological evaluation of ‎the platelets rich ‎fibrin and bone marrow on healing of experimental ‎induced distal radial fracture in local dogs: ‎Iraqi J.Vet.Med. 2019;‎‎43(1):11-20. 10.30539/iraqijvm.v43i1.465

‎Al-Timmemi H, Ibrahim R, Al-Jashamy K, Zuki A, Azmi T, Ramassamy ‎R. Identification ‎of adipogenesis and osteogenesis pathway of ‎differentiated bone marrow stem cells in vitro in ‎rabbit. Ann Microsc. ‎‎2011;11:24-29.‎

Yang Y-HK, Ogando CR, Wang See C, Chang T-Y, Barabino GA. Changes ‎in phenotype ‎and differentiation potential of human mesenchymal ‎stem cells aging in vitro. Stem Cell Res ‎Ther. 2018;9:1-14. 10.1186/s13287-018-0876-3

Similar Articles

You may also start an advanced similarity search for this article.