Evaluation of Antibacterial and Antibiofilm Activity of Biogenic Silver Nanoparticles and Gentamicin Against Staphylococcus aureus Isolated from Caprine Mastitis

Main Article Content

Ali H AL-Dujaily
Alaa K Mahmood

Abstract





The goal of this study was to assess the antibacterial efficiency of biogenic silver nanoparticles (AgNPs) and gentamicin against Staphylococcus aureus that can form biofilms. The characterization of AgNPs‎ was confirmed by the scanning electron microscope (SEM) which was spherical and homogenous in form, with a diameter between 25 and 45 nm. The X-ray diffraction (XRD) presented the size of AgNPs to be 50 nm. Energy dispersive spectroscopy (EDS) was used to examine the presence of elemental silver. The three-dimensional structure of silver nanoparticles was discovered using an atomic force microscope (AFM), with a diameter of 47.18 nm on average. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of AgNPs and gentamicin against S. aureus isolated from caprine mastitis were determined using the microdilution assay. The checkerboard microdilution technique was utilized to inspect the synergistic antibacterial activity of AgNPs with gentamicin utilizing the fractional inhibitory concentration index (FICI). The antibiofilm capability of AgNPs was also investigated. The results indicate that AgNPs generated by biosynthesis are antibacterial against S. aureus. Moreover, AgNPs and gentamicin exhibit synergistic action. The study's findings suggest that biogenic AgNPs may act as anti-biofilm agents and treat mastitis caused by S. aureus. In conclusions biosynthesized AgNPs exhibit strong antibacterial and antibiofilm effectiveness and synergistic activity when combined with gentamicin.





Downloads

Download data is not yet available.

Article Details

How to Cite
Evaluation of Antibacterial and Antibiofilm Activity of Biogenic Silver Nanoparticles and Gentamicin Against Staphylococcus aureus Isolated from Caprine Mastitis . (2022). The Iraqi Journal of Veterinary Medicine, 46(1), 10-16. https://doi.org/10.30539/ijvm.v46i1.1309
Section
Articles

How to Cite

Evaluation of Antibacterial and Antibiofilm Activity of Biogenic Silver Nanoparticles and Gentamicin Against Staphylococcus aureus Isolated from Caprine Mastitis . (2022). The Iraqi Journal of Veterinary Medicine, 46(1), 10-16. https://doi.org/10.30539/ijvm.v46i1.1309

References

Rainard P, Gitton C, Chaumeil T, Fassier T, Huau C, Riou M, et al. ‎Host factors determine the ‎evolution of infection with Staphylococcus aureus ‎to gangrenous mastitis in goats. Vet Res. ‎‎2018; 49(1):1–17.‎ https://doi.org/10.1186/s13567-018-0564-4

Angelidis AS, Komodromos D, Giannakou R, Arsenos G, Gelasakis AI, Kyritsi ‎M, et al. Isolation and ‎characterization of Staphylococcus aureus and ‎methicillin-resistant Staphylococcus aureus ‎‎(MRSA) from milk of dairy goats ‎under low-input farm management in Greece. Vet Microbiol. ‎‎2020; 247:108749.‎ https://doi.org/10.1016/j.vetmic.2020.108749

Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial ‎biofilms: A focus on anti-‎biofilm agents and their mechanisms of action. ‎Virulence. 2018; 9(1):522–554.‎ https://doi.org/10.1080/21505594.2017.1313372

Jiang Y, Geng M, Bai L. Targeting biofilms therapy: current research strategies ‎and development ‎hurdles. Microorganisms. 2020; 8(8):1222.‎ https://doi.org/10.3390/microorganisms8081222

Malaekeh-Nikouei B, Bazzaz BSF, Mirhadi E, Tajani AS, Khameneh B. The ‎role of nanotechnology in ‎combating biofilm-based antibiotic resistance. J Drug ‎Deliv Sci Technol. 2020; 101880.‎ https://doi.org/10.1016/j.jddst.2020.101880

Salih ANA, Eesa MJ. Antibacterial activity of biosynthesized silver ‎nanoparticles against ‎Pseudomonas aeruginosa in vitro. Iraqi J. Vet. Med. ‎‎2017; 41(1):60–65.‎ https://doi.org/10.30539/iraqijvm.v41i1.81

Wang J, Li J, Guo G, Wang Q, Tang J, Zhao Y, et al. Silver-nanoparticles-‎modified biomaterial surface ‎resistant to Staphylococcus: new insight into the ‎antimicrobial action of silver. Sci Rep. ‎‎2016; 6(1):1–16.‎ https://doi.org/10.1038/srep32699

Murphy M, Ting K, Zhang X, Soo C, Zheng Z. Current development of silver ‎nanoparticle ‎preparation, investigation, and application in the field of medicine. ‎J Nanomater. 2015; 2015.‎ https://doi.org/10.1155/2015/696918

Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, et al. ‎Effects of silver ‎nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci. ‎‎2013;131(2):537–547.‎ https://doi.org/10.1093/toxsci/kfs306

Institute C and LS. Performance standards for antimicrobial susceptibility ‎testing. CLSI supplement ‎M100. Clinical and Laboratory Standards Institute ‎Wayne, PA; 2017.‎

Bär W, Bäde-Schumann U, Krebs A, Cromme L. Rapid method for detection ‎of minimal bactericidal ‎concentration of antibiotics. J Microbiol Methods. ‎‎2009; 77(1):85–89.‎ https://doi.org/10.1016/j.mimet.2009.01.010

Owuama CI. Determination of minimum inhibitory concentration (MIC) and ‎minimum bactericidal ‎concentration (MBC) using a novel dilution tube method. ‎African J Microbiol Res. 2017; ‎‎11(23):977–980.‎ https://doi.org/10.5897/AJMR2017.8545

Humphries RM. Testing: broth microdilution checkerboard and broth ‎macrodilution methods. Clin ‎Microbiol Proced Handbook Washington, DC Am ‎Soc Microbiol. 2016; 5:1–5.‎ https://doi.org/10.1128/9781555818814.ch5.16

Botelho MG. Fractional inhibitory concentration index of combinations of ‎antibacterial agents ‎against cariogenic organisms. J Dent. 2000; 28(8): 565–570.‎ https://doi.org/10.1016/S0300-5712(00)00039-7

Meletiadis J, Pournaras S, Roilides E, Walsh TJ. Defining fractional inhibitory ‎concentration index ‎cutoffs for additive interactions based on self-drug ‎additive combinations, Monte Carlo ‎simulation analysis, and in vitro-in vivo ‎correlation data for antifungal drug combinations ‎against Aspergillus ‎fumigatus. Antimicrob Agents Chemother. 2010;54(2):602–609.‎ https://doi.org/10.1128/AAC.00999-09

Ruchi T, Sujata B, Anuradha D. Comparison of phenotypic methods for the ‎detection of biofilm ‎production in uro-pathogens in a tertiary care hospital in ‎India. Int J Curr Microbiol App Sci. ‎‎2015; 4(9):840–849.‎

Singh P, Pandit S, Garnæs J, Tunjic S, Mokkapati VRSS, Sultan A, et al. Green ‎synthesis of gold and ‎silver nanoparticles from Cannabis sativa (industrial ‎hemp) and their capacity for biofilm ‎inhibition. Int J Nanomedicine. ‎‎2018; 13:3571.‎ https://doi.org/10.2147/IJN.S157958

Greenwood D, Finch R, Davey P. Antimicrobial chemotherapy. Oxford ‎university press, USA; 2007.‎

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of ‎antimicrobials. Biotechnol Adv. ‎‎2009; 27(1):76–83.‎ https://doi.org/10.1016/j.biotechadv.2008.09.002

Jiravova J, Tomankova KB, Harvanova M, Malina L, Malohlava J, Luhova L, et ‎al. The effect of silver ‎nanoparticles and silver ions on mammalian and plant ‎cells in vitro. Food Chem Toxicol. ‎‎2016;96:50–61.‎ https://doi.org/10.1016/j.fct.2016.07.015

Batarseh KI. Anomaly and correlation of killing in the therapeutic properties of ‎silver (I) chelation ‎with glutamic and tartaric acids. J Antimicrob Chemother. ‎‎2004; 54(2):546–548.‎ https://doi.org/10.1093/jac/dkh349

Elbehiry A, Al‐Dubaib M, Marzouk E, Moussa I. Antibacterial effects and ‎resistance induction of ‎silver and gold nanoparticles against Staphylococcus ‎aureus‐induced mastitis and the potential ‎toxicity in rats. Microbiologyopen. ‎‎2019; 8(4):e00698.‎ https://doi.org/10.1002/mbo3.698

Ipe DS, Kumar PT, Love RM, Hamlet SM. Silver nanoparticles at ‎biocompatible dosage ‎synergistically increases bacterial susceptibility to ‎antibiotics. Front Microbiol. 2020; 11:1074.‎ https://doi.org/10.3389/fmicb.2020.01074

Sharifi-Rad J, Hoseini‑Alfatemi SM, Sharifi-Rad M, Iriti M. Antimicrobial ‎synergic effect of Allicin and ‎silver nanoparticles on skin infection caused by ‎methicillin resistant Staphylococcus aureus spp. ‎Ann Med Health Sci Res. ‎‎2014; 4(6):863–868.

https://doi.org/10.4103/2141-9248.144883

Yuan Y-G, Peng Q-L, Gurunathan S. Effects of silver nanoparticles on multiple ‎drug-resistant strains ‎of Staphylococcus aureus and Pseudomonas aeruginosa ‎from mastitis-infected goats: an ‎alternative approach for antimicrobial therapy. ‎Int J Mol Sci. 2017; 18(3):569.‎ https://doi.org/10.3390/ijms18030569

Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles ‎depend on the shape ‎of the nanoparticle? A study of the gram-negative ‎bacterium Escherichia coli. Appl Environ ‎Microbiol. 2007; 73(6):1712–1720.‎ https://doi.org/10.1128/AEM.02218-06

Barapatre A, Aadil KR, Jha H. Synergistic antibacterial and antibiofilm activity ‎of silver nanoparticles ‎biosynthesized by lignin-degrading fungus. Bioresour ‎Bioprocess. 2016; 3(1):1–13.‎ https://doi.org/10.1186/s40643-016-0083-y

Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. ‎Biogenic synthesis of silver ‎nanoparticles and their synergistic effect with ‎antibiotics: a study against gram-positive and ‎gram-negative bacteria. ‎Nanomedicine Nanotechnology, Biol Med. 2010; 6(1):103–109.‎ https://doi.org/10.1016/j.nano.2009.04.006

Birla SS, Tiwari V, Gade AK, Ingle AP, Yadav AP, Rai MK. Fabrication of ‎silver nanoparticles by ‎Phoma glomerata and its combined effect against ‎Escherichia coli, Pseudomonas aeruginosa ‎and Staphylococcus aureus. Lett ‎Appl Microbiol. 2009; 48(2):173–179.‎ https://doi.org/10.1111/j.1472-765X.2008.02510.x

Smekalova M, Aragon V, Panacek A, Prucek R, Zboril R, Kvitek L. Enhanced ‎antibacterial effect of ‎antibiotics in combination with silver nanoparticles ‎against animal pathogens. Vet J. 2016; ‎‎209:174–179.‎ https://doi.org/10.1016/j.tvjl.2015.10.032

Van Dong P, Ha CH, Kasbohm J. Chemical synthesis and antibacterial activity ‎of novel-shaped silver ‎nanoparticles. Int Nano Lett. 2012; 2(1):1–9.‎ https://doi.org/10.1186/2228-5326-2-9

Saha S, Malik MM, Qureshi MS. Study of synergistic effects of antibiotics ‎and triangular shaped ‎silver nanoparticles, synthesized using UV-light ‎irradiation, on S. aureus and P. aeruginosa. ‎Mater Today Proc. 2019; 18:920–‎‎927.‎ https://doi.org/10.1016/j.matpr.2019.06.525

Arul Selvaraj RC, Rajendran M, Nagaiah HP. Re-potentiation of β-lactam ‎antibiotic by synergistic ‎combination with biogenic copper oxide nanocubes ‎against biofilm forming multidrug-resistant ‎bacteria. Molecules. ‎‎2019; 24(17):3055.‎ https://doi.org/10.3390/molecules24173055

Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. ‎Staphylococcus aureus ‎biofilms: properties, regulation, and roles in human ‎disease. Virulence 2: 2011 445–459.‎ https://doi.org/10.4161/viru.2.5.17724

Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in ‎Staphylococcus aureus ‎biofilms. J Bacteriol. 2004; 186(6):1838–1850.‎ https://doi.org/10.1128/JB.186.6.1838-1850.2004

Otto M. Staphylococcal biofilms. Bact biofilms. 2008: 207–28.‎ https://doi.org/10.1007/978-3-540-75418-3_10

Faller M, Kohler T. The status of biofilms in penile implants. Microorganisms. ‎‎2017; 5(2):19.‎ https://doi.org/10.3390/microorganisms5020019

Aldujaili NH, Alrufa MM, Sahib FH. Antibiofilm antibacterial and antioxidant ‎activity of ‎biosynthesized silver nanoparticles using pantoea agglomerans. J ‎Pharm Sci Res. ‎‎2017; 9(7):1220.‎

Goswami SR, Sahareen T, Singh M, Kumar S. Role of biogenic silver ‎nanoparticles in disruption of ‎cell–cell adhesion in Staphylococcus aureus and ‎Escherichia coli biofilm. J Ind Eng Chem. 2015; ‎‎26:73–80.‎ https://doi.org/10.1016/j.jiec.2014.11.017

Martinez-Gutierrez F, Boegli L, Agostinho A, Sánchez EM, Bach H, Ruiz F, et ‎al. Anti-biofilm activity ‎of silver nanoparticles against different ‎microorganisms. Biofouling. 2013; 29(6):651–660.‎ https://doi.org/10.1080/08927014.2013.794225

Sharma VK, Sayes CM, Guo B, Pillai S, Parsons JG, Wang C, et al. ‎Interactions between silver ‎nanoparticles and other metal nanoparticles under ‎environmentally relevant conditions: A ‎review. Sci Total Environ. ‎‎2019; 653:1042–1051.‎ https://doi.org/10.1016/j.scitotenv.2018.10.411

Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial ‎mechanism of silver nanoparticles ‎and its application in dentistry. Int J ‎Nanomedicine. 2020; 15:2555.‎ https://doi.org/10.2147/IJN.S246764

Singh P, Pandit S, Beshay M, Mokkapati V, Garnaes J, Olsson ME, et al. Anti-‎biofilm effects of gold ‎and silver nanoparticles synthesized by the Rhodiola ‎rosea rhizome extracts. Artif cells, ‎nanomedicine, Biotechnol. ‎‎2018; 46(sup3):S886–S899.‎ https://doi.org/10.1080/21691401.2018.1518909

Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E. ZnO ‎nanoparticle-coated ‎surfaces inhibit bacterial biofilm formation and increase ‎antibiotic susceptibility. Rsc Adv. ‎‎2012;2(6):2314–21.‎ https://doi.org/10.1039/c2ra00602b

Sadekuzzaman M, Yang S, Mizan MFR, Ha SD. Current and recent advanced ‎strategies for ‎combating biofilms. Compr Rev Food Sci Food Saf. ‎‎2015; 14(4):491–509.‎ https://doi.org/10.1111/1541-4337.12144

Similar Articles

You may also start an advanced similarity search for this article.