Use of Tannin-Containing Plants as Antimicrobials Influencing the Animal Health

Main Article Content

Mohammed M Dakheel
Afnan A Al-Mnaser
Jessica Quijada
Martin J Woodward
Caroline Rymer

Abstract

The antimicrobial effects of diverse tannin-containing plants, particularly condensed tannins (CTs) produced from various plants, are the subject of this study. CT components can be determined using CT-specific procedures such the HCl-Butanol Acetone assay, Thiolysis reaction, and HPLC/MS analysis. These methods indicate CT contents, including mean degree of polymerization, the procyanidins and prodelphinidins ratio (PC/PD%), the isomers of trans- and cis-, and CT concentration. Tannin-containing plants possess antibacterial action, which can be attributed to their protein linkage technique, and tannin-type variations, particularly CTs extract and their PC/PD%. The effects of CT components on the development of Gram-positive and Gram-negative bacteria have been documented for their relative PC/PD%; this is regarded to be a key predictor of tannin characteristics in terms of antimicrobials. In conclusion, tannins, more specific CT compositions, have significant impacts on in vivo trials of animal productions and utilization of metabolites and fermentation in vitro experiments. These findings need further investigations to fully understand how CT-types act on animal feeding in terms of enhanced nutritional quality of animal diets, which may have implications for human and animal health.

Downloads

Download data is not yet available.

Article Details

Section

Reviews

How to Cite

Dakheel, M. M. ., Al-Mnaser, A. A. ., Quijada, J. ., Woodward, M. J. ., & Rymer, C. . (2021). Use of Tannin-Containing Plants as Antimicrobials Influencing the Animal Health. The Iraqi Journal of Veterinary Medicine, 45(2), 33-40. https://doi.org/10.30539/ijvm.v45i2.1258

Publication Dates

References

Humphrey T, O'Brien S, Madsen M. Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol. 2007; 117(3): 237-257. DOI: https://doi.org/10.1016/j.ijfoodmicro.2007.01.006

Karikari AB, Obiri-Danso K, Frimpong EH, Krogfelt KA. Antibiotic resistance in Campylobacter isolated from patients with gastroenteritis in a teaching hospital in Ghana. Open J. Med. Microbiol. 2017; 7(1): 1-11. DOI: https://doi.org/10.4236/ojmm.2017.71001

Dakheel MM, Al-Saigh MNR. The effect of using Ginger (Zingiber officinale) or parsley seeds (Petroselinum sativum) on some of physiologically traits of black Iraqi local Doe. Iraqi J. Vet. Med. 2012; 36(0A): 142-50. DOI: https://doi.org/10.30539/iraqijvm.v36i0A.367

Avidov R, Varma VS, Saadi I, Hanan A, Yoselevich I, Lublin A, Chen Y, Laor Y. Physical and chemical indicators of transformations of poultry carcass parts and broiler litter during short term thermophilic composting. Waste Management. 2021; 119: 202-214. DOI: https://doi.org/10.1016/j.wasman.2020.09.040

Heres L, Engel B, Van Knapen F, Wagenaar JA, Urlings BA. Effect of fermented feed on the susceptibility for Campylobacter jejuni colonisation in broiler chickens with and without concurrent inoculation of Salmonella enteritidis. Int J Food Microbiol. 2003; 87(1-2): 75-86. DOI: https://doi.org/10.1016/S0168-1605(03)00055-2

Muthuirulandi Sethuvel DP, Devanga Ragupathi NK, Anandan S, Veeraraghavan B. Update on: Shigella new serogroups/serotypes and their antimicrobial resistance. Lett Appl Microbiol. 2017; 64(1): 8-18. DOI: https://doi.org/10.1111/lam.12690

Chichlowski M, Croom WJ, Edens FW, McBride BW, Qiu R, Chiang CC, Daniel LR, Havenstein GB, Koci MD. Microarchitecture and spatial relationship between bacteria and ileal, cecal, and colonic epithelium in chicks fed a direct-fed microbial, PrimaLac, and salinomycin. Poult Sci. 2007; 86(6): 1121-1132. DOI: https://doi.org/10.1093/ps/86.6.1121

Heres L, Engel B, Urlings HA, Wagenaar JA, Van Knapen F. Effect of acidified feed on susceptibility of broiler chickens to intestinal infection by Campylobacter and Salmonella. Vet Microbiol. 2004; 99(3-4): 259-267. DOI: https://doi.org/10.1016/j.vetmic.2003.12.008

Jhung MA, Thompson AD, Killgore GE, Zukowski WE, Songer G, Warny M, Johnson S, Gerding DN, McDonald LC, Limbago BM. Toxinotype V Clostridium difficile in humans and food animals. Emerg Infect Dis. 2008; 14(7): 1039-1045. DOI: https://doi.org/10.3201/eid1407.071641

Petit L, Gibert M, Popoff MR. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 1999; 7(3): 104-110. DOI: https://doi.org/10.1016/S0966-842X(98)01430-9

Knight DR, Riley TV. Genomic delineation of zoonotic origins of Clostridium difficile. Front Public Health. 2019. 20;7:164. DOI: https://doi.org/10.3389/fpubh.2019.00164

McDougald LR. Intestinal protozoa important to poultry. Poult Sci. 1998; 77(8): 1156-1158. DOI: https://doi.org/10.1093/ps/77.8.1156

Stanley D, Keyburn AL, Denman SE, Moore RJ. Changes in the caecal microflora of chickens following Clostridium perfringens challenge to induce necrotic enteritis. Vet Microbiol. 2012; 159(1-2): 155-162. DOI: https://doi.org/10.1016/j.vetmic.2012.03.032

Moreki JC. Use of ethnoveterinary medicine in family poultry health management in Botswana: a review. J. Vet. Adv. 2012; 2(6): 254-260. DOI: https://doi.org/10.5455/vetworld.2013.18-21

Zhao S, Yang L, Liu H, Gao F. Stenotrophomonas maltophilia in a university hospital of traditional Chinese medicine: molecular epidemiology and antimicrobial resistance. J Hosp Infect. 2017; 96(3): 286-289. DOI: https://doi.org/10.1016/j.jhin.2017.04.001

Liu J, Peng L, Huang W, Li Z, Pan J, Sang L, Lu S, Zhang J, Li W, Luo Y. Balancing between aging and cancer: molecular genetics meets traditional Chinese medicine. J Cell Biochem. 2017a; 118(9): 2581-2586. DOI: https://doi.org/10.1002/jcb.25898

Liu M, Huang P, Wang Q, Ren B, Oyeleye A, Liu M, Zhang J, Li X, Zhang X, Zhang L, Liu X. Synergistic antifungal indolecarbazoles

from Streptomyces sp. CNS-42 associated with traditional Chinese medicine Alisma orientale. Alisma orientale. J. Antibiot. (Tokyo). 2017b; 70(5): 715-717. DOI: https://doi.org/10.1038/ja.2016.160

Xu LQ, Yu XT, Gui SH, Xie JH, Wang XF, Su ZQ, Li YC, Lai XP, Zhan JY, Xie YL. Protective effects of Li-Fei-Xiao-Yan prescription on lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the TLR4/NF-ƒÈB pathway. Evid Based Complement Alternat Med. 2017; 2017: 1791789. DOI: https://doi.org/10.1155/2017/1791789

Castanon JI. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci. 2007; 86(11): 2466-2471. DOI: https://doi.org/10.3382/ps.2007-00249

Wallace RJ, Oleszek W, Franz C, Hahn I, Baser KH, Mathe A, Teichmann K. Dietary plant bioactives for poultry health and productivity. Br Poult Sci. 2010; 51(4): 461-487. DOI: https://doi.org/10.1080/00071668.2010.506908

Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, Mavumengwana V, Li HB. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019; 8(7): 246. DOI: https://doi.org/10.3390/foods8070246

Eid KM, Iraqi MM. Effect of garlic powder on growth performance and immune response for Newcastle and avian influenza virus diseases in broiler of chickens. Anim. Biotechnol (Poultry and Fish). 2014; 1: 7-13.

Jorgensen F, Bailey R, Williams S, Henderson P, Wareing DR, Bolton FJ, Frost JA, Ward L, Humphrey TJ. Prevalence and numbers of Salmonella and Campylobacter spp. on raw, whole chickens in relation to sampling methods. Int J Food Microbiol. 2002; 76(1-2): 151-164. DOI: https://doi.org/10.1016/S0168-1605(02)00027-2

El-Shibiny A, Connerton PL, Connerton IF. Campylobacter succession in broiler chickens. Vet Microbiol. 2007; 125(3-4): 323-332. DOI: https://doi.org/10.1016/j.vetmic.2007.05.023

Park SF. The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol. 2002; 74(3): 177-188. DOI: https://doi.org/10.1016/S0168-1605(01)00678-X

Gharib Naseri K, Rahimi S, Khaki P. Comparison of the effects of probiotic, organic acid and medicinal plant on Campylobacter jejuni challenged broiler chickens. J. Agr. Sci. Tech. 2012; 14(7): 1485-1496.

Yan L, Meng QW, Kim IH. Effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weanling pigs. Livest Sci. 2012; 145(1-3): 189-195. DOI: https://doi.org/10.1016/j.livsci.2012.02.001

Hossain ME, Kim GM, Sun SS, Firman JD, Yang CJ. Evaluation of water plantain (Alisma canaliculatum A. Br. et Bouche) and mistletoe (Viscum album L.) effects on broiler growth performance, meat composition and serum biochemical parameters. J. Med. Plants Res. 2012; 6(11): 2160-2169. DOI: https://doi.org/10.5897/JMPR11.1538

Mahady GB, Pendland SL, Stoia A, Chadwick LR. In vitro susceptibility of Helicobacter pylori to isoquinoline alkaloids from Sanguinaria canadensis and Hydrastis canadensis. Phytother Res. 2003; 17(3): 217-221. DOI: https://doi.org/10.1002/ptr.1108

Zhao XH, He X, Yang XF, Zhong XH. Effect of Portulaca oleracea extracts on growth performance and microbial populations in ceca of broilers. Poult Sci. 2013; 92(5): 1343-1347. DOI: https://doi.org/10.3382/ps.2012-02434

Windisch W, Schedle K, Plitzner C, Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci. 2008; 86(14): E140-E148. DOI: https://doi.org/10.2527/jas.2007-0459

Dakheel MM, Alkandari FA, Mueller]Harvey I, Woodward MJ, Rymer C. Antimicrobial in vitro activities of condensed tannin extracts on avian pathogenic Escherichia coli. Lett Appl Microbiol. 2020; 70(3): 165-72. DOI: https://doi.org/10.1111/lam.13253

Butler LG. Antinutritional effects of condensed and hydrolyzable tannins. In: Hemingway RW, Laks PE, editors. Plant Polyphenols. Basic Life Sciences, vol 59. Plenum, New York: Springer, Boston, MA; 1992.p.693-698. DOI: https://doi.org/10.1007/978-1-4615-3476-1_40

Lowry JB, McSweeney CS, Palmer B. Changing perceptions of the effect of plant phenolics on nutrient supply in the ruminant. Australian J. Agri. Res. 1996; 47(6): 829-842. DOI: https://doi.org/10.1071/AR9960829

Mueller-Harvey I. Analysis of hydrolysable tannins. Anim Feed Sci Technol. 2001; 91(1-2): 3-20. DOI: https://doi.org/10.1016/S0377-8401(01)00227-9

Schofield P, Mbugua DM, Pell AN. Analysis of condensed tannins: a review. Anim Feed Sci Technol. 2001; 91(1-2): 21-40. DOI: https://doi.org/10.1016/S0377-8401(01)00228-0

Zeller WE, Ramsay A, Ropiak HM, Fryganas C, Mueller-Harvey I, Brown RH, Drake C, Grabber JH. 1H.13C HSQC NMR spectroscopy for estimating procyanidin/prodelphinidin and cis/trans-flavan-3-ol ratios of condensed tannin samples: Correlation with thiolysis. J Agric Food Chem. 2015; 63(7): 1967-1973. DOI: https://doi.org/10.1021/jf504743b

Gea A, Stringano E, Brown RH, Mueller-Harvey I. In situ analysis and structural elucidation of sainfoin (Onobrychis viciifolia) tannins for high-throughput germplasm screening. J Agric Food Chem. 2011; 59(2): 495-503. DOI: https://doi.org/10.1021/jf103609p

Brown RH, Mueller-Harvey I, Zeller WE, Reinhardt L, Stringano E, Gea A, Drake C, Ropiak HM, Fryganas C, Ramsay A, Hardcastle EE. Facile purification of milligram to gram quantities of condensed tannins according to mean degree of polymerization and flavan-3-ol subunit composition. J Agric Food Chem. 2017; 65(36): 8072-82. DOI: https://doi.org/10.1021/acs.jafc.7b03489

Espin JC, Gonzalez-Sarrias A, Tomas-Barberan FA. The gut microbiota: A key factor in the therapeutic effects of (poly) phenols. Biochem Pharmacol. 2017; 139: 82-93. DOI: https://doi.org/10.1016/j.bcp.2017.04.033

Van Parys A, Boyen F, Dewulf J, Haesebrouck F, Pasmans F. The use of tannins to control Salmonella typhimurium infections in pigs. Zoonoses Public Health. 2010; 57(6): 423-428. DOI: https://doi.org/10.1111/j.1863-2378.2009.01242.x

Reyes AW, Hong TG, Hop HT, Arayan LT, Huy TX, Min W, Lee HJ, Lee KS, Kim S. The in vitro and in vivo protective effects of tannin derivatives against Salmonella enterica serovar Typhimurium infection. Microb Pathog. 2017; 109: 86-93. DOI: https://doi.org/10.1016/j.micpath.2017.05.034

Coddens A, Loos M, Vanrompay D, Remon JP, Cox E. Cranberry extract inhibits in vitro adhesion of F4 and F18+ Escherichia coli to pig intestinal epithelium and reduces in vivo excretion of pigs orally challenged with F18+ verotoxigenic E. coli. Vet Microbiol. 2017; 202: 64-71. DOI: https://doi.org/10.1016/j.vetmic.2017.01.019

Waghorn GC, McNabb WC. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc Nutr Soc. 2003; 62(2): 383-92. DOI: https://doi.org/10.1079/PNS2003245

Waghorn G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production.Progress and challenges. Anim Feed Sci Technol. 2008; 147(1-3): 116-139. DOI: https://doi.org/10.1016/j.anifeedsci.2007.09.013

Hoste H, Torres-Acosta JF, Quijada J, Chan-Perez I, Dakheel MM, Kommuru DS, Mueller-Harvey I, Terrill TH. Interactions between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. Advances in parasitolog. 2016; 93: 239-351. DOI: https://doi.org/10.1016/bs.apar.2016.02.025

Hoste H, Torres-Acosta JF, Sandoval-Castro CA, Mueller-Harvey I, Sotiraki S, Louvandini H, Thamsborg SM, Terrill TH. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet Parasitol. 2015; 212(1-2): 5-17. DOI: https://doi.org/10.1016/j.vetpar.2015.06.026

48 Kraus TEC, Dahlgren RA, and Zasoski, RJ Tannins in nutrient dynamics of forest ecosystems - a review. Plant and Soil. 2003; 256: 41-66. DOI: https://doi.org/10.1023/A:1026206511084

Norris CE, Preston CM, Hogg KE, Titus BD. The influence of condensed tannin structure on rate of microbial mineralization and reactivity to chemical assays. J Chem Ecol. 2011; 37: 311.319. DOI: https://doi.org/10.1007/s10886-011-9921-8

Mueller-Harvey I, Bee G, Dohme-Meier F, Hoste H, Karonen M, Kolliker R, et al. Benefits of condensed tannins in forage legumes fed to ruminants: importance of structure, concentration and diet. Crop Science. 2019; 59: 1-25. DOI: https://doi.org/10.2135/cropsci2017.06.0369

Ropiak HM, Ramsay A, Mueller-Harvey I. Condensed tannins in extracts from European medicinal plants and herbal products. J Pharm Biomed Anal. 2016; 121: 225-231. DOI: https://doi.org/10.1016/j.jpba.2015.12.034

Ganan M, Martinez-Rodriguez AJ, and Carrascosa AV. Antimicrobial activity of phenolic compounds of wine against Campylobacter jejuni. Food Control. 2009; 20(8): 739-742. DOI: https://doi.org/10.1016/j.foodcont.2008.09.012

Niderkorn V, Barbier E, Macheboeuf D, Torrent A, Mueller-Harvey I, and Hoste H. In vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (Onobrychis viciifolia Scop.) pellets and hazelnut (Corylus avellana L.) pericarps. Anim. Feed Sci. Technol. 2020; 259: 114357. DOI: https://doi.org/10.1016/j.anifeedsci.2019.114357

Sheng L, Olsen S.A, Hu J, Yue W, Means WJ, and Zhu MJ. Inhibitory effects of grape seed extract on growth, quorum sensing, and virulence factors of CDC "top-six" non-O157 Shiga toxin producing E. coli. Int J Food Microbiol 2016; 229: 24-32. DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.04.001

Dakheel MM, Kaur A, Al-Mnaser AA, Mueller-Harvey I, Woodward MJ, and Rymer C. Assessment of the anti-pathogenic effects of condensed tannin extracts using scanning electron microscopy. Arch Micro. 2021; 203(4): 1555-1563. DOI: https://doi.org/10.1007/s00203-020-02147-9

Shao D, Li J, Li J, Tang R, Liu L, Shi J, Huang Q, Yang H. Inhibition of gallic acid on the growth and biofilm formation of Escherichia coli and Streptococcus mutans. J Food Sci. 2015; 80(6): M1299-M1305. DOI: https://doi.org/10.1111/1750-3841.12902

O'May C, Ciobanu A, Lam H, Tufenkji N. Tannin derived materials can block swarming motility and enhance biofilm formation in Pseudomonas aeruginosa. Biofouling. 2012; 28(10): 1063-1076. DOI: https://doi.org/10.1080/08927014.2012.725130

Kaya I, Yigit N, Benli M. Antimicrobial activity of various extracts of Ocimum basilicum L. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. Afr J Tradit Complement Altern Med. 2008; 5(4): 363-369. DOI: https://doi.org/10.4314/ajtcam.v5i4.31291

Valenzuela-Grijalva NV, Pinelli-Saavedra A, Muhlia-Almazan A, Dominguez-Diaz D, Gonzalez-Rios H. Dietary inclusion effects of phytochemicals as growth promoters in animal production. J Anim Sci Technol. 2017; 59: 8. DOI: https://doi.org/10.1186/s40781-017-0133-9

Missotten JA, Michiels J, Dierick N, Ovyn A, Akbarian A, De Smet S. Effect of fermented moist feed on performance, gut bacteria and gut histo-morphology in broilers. Br Poult Sci. 2013; 54(5): 627-34. DOI: https://doi.org/10.1080/00071668.2013.811718

Missotten JA, Michiels J, Ovyn A, De Smet S, Dierick NA. Fermented liquid feed for pigs. Arch Anim Nutr. 2010; 64(6): 437-466. DOI: https://doi.org/10.1080/1745039X.2010.512725

Van Winsen RL, Urlings BA, Lipman LJ, Snijders JM, Keuzenkamp D, Verheijden JH, and van Knapen F. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl Environ Microbiol. 2001; 67(7): 3071-3076. DOI: https://doi.org/10.1128/AEM.67.7.3071-3076.2001

Bederska-.ojewska D, .wi.tkiewicz S, and Muszy.ska B. The use of Basidiomycota mushrooms in poultry nutrition.a review. Anim Feed Sci Technol 2017; 230: 59-69. DOI: https://doi.org/10.1016/j.anifeedsci.2017.06.001

Bell V, Ferrao J, Pimentel L, Pintado M, and Fernandes T. One health, fermented foods, and gut microbiota. Foods. 2018; 7(12): 195. DOI: https://doi.org/10.3390/foods7120195

Sugiharto S, Ranjitkar S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim Nutr. 2019; 5(1): 1-10. DOI: https://doi.org/10.1016/j.aninu.2018.11.001

Jeaurond EA, Rademacher M, Pluske JR, Zhu CH, and de Lange CFM. Impact of feeding fermentable proteins and carbohydrates on growth performance, gut health and gastrointestinal function of newly weaned pigs. Can. J Anim. Sci. 2008; 88(2): 271-281. DOI: https://doi.org/10.4141/CJAS07062

Montagne L, Pluske JR, and Hampson DJ. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol. 2003; 108(1-4): 95-117. DOI: https://doi.org/10.1016/S0377-8401(03)00163-9

Tagliazucchi D, Verzelloni E, Bertolini D, and Conte A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010; 120(2): 599-606. DOI: https://doi.org/10.1016/j.foodchem.2009.10.030

Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl). 2013; 97(2): 207-237. DOI: https://doi.org/10.1111/j.1439-0396.2012.01284.x

O'Keefe SJ. Nutrition and colonic health: the critical role of the microbiota. Curr Opin Gastroenterol. 2008; 24(1): 51-58. DOI: https://doi.org/10.1097/MOG.0b013e3282f323f3

Williams BA, Bosch MW, Boer H, Verstegen MWA, and Tamminga S. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim Feed Sci Technol. 2005; 123-124: 445-462. DOI: https://doi.org/10.1016/j.anifeedsci.2005.04.031

Quijada J, Drake C, Gaudin E, El-Korso R, Hoste H, and Mueller-Harvey I. Condensed tannin changes along the digestive tract in lambs fed with sainfoin pellets or hazelnut skins. J Agric Food Chem. 2018; 66(9): 2136-2142. DOI: https://doi.org/10.1021/acs.jafc.7b05538

Coles LT, Moughan PJ, and Darragh AJ. In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Anim Feed Sci Technol. 2005; 123-124: 421-444. DOI: https://doi.org/10.1016/j.anifeedsci.2005.04.021

Gross G, Jacobs DM, Peters S, Possemiers S, van Duynhoven J, Vaughan EE, van de Wiele T. In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. J. Agric. Food Chem. 2010; 58(18): 10236-10246. DOI: https://doi.org/10.1021/jf101475m

Le Roy CI, Mappley LJ, La Ragione RM, Woodward MJ, and Claus SP. NMR-based metabolic characterization of chicken tissues and biofluids: a model for avian research. Metabolomics. 2016; 12(10): 157. DOI: https://doi.org/10.1007/s11306-016-1105-7

Mora]Ortiz M, Ramos PN, Alain Oregioni, and Claus SP. NMR metabolomics identifies over 60 biomarkers associated with Type II Diabetes impairment in db/db mice. Metabolomics. 2019a; 15: 89. DOI: https://doi.org/10.1007/s11306-019-1548-8

Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed. 2005; 18(3): 143-162. DOI: https://doi.org/10.1002/nbm.935

Dunn WB, Ellis DI. Metabolomics: Current analytical platforms and methodologies. TrAc Trends Anal Chem. 2005; 24(4): 285-294. DOI: https://doi.org/10.1016/j.trac.2004.11.021

Fryganas C, Drake C, Ropiak HM, Mora-Ortiz M, Smith LM, Mueller-Harvey I, Kowalczyk RM. Carbon-13 cross-polarization magic-

angle spinning nuclear magnetic resonance for measuring proanthocyanidin content and procyanidin to prodelphinidin ratio in sainfoin (Onobrychis viciifolia) tissues. J. Agric. Food Chem. 2018; 66(16): 4073-4081. DOI: https://doi.org/10.1021/acs.jafc.8b01215

Mora]Ortiz M, Trichard M, Oregioni A, Claus SP. Thanatometabolomics: introducing NMR-based metabolomics to identify metabolic biomarkers of the time of death. Metabolomics. 2019b; 15(3): 1-11. DOI: https://doi.org/10.1007/s11306-019-1498-1

Ly S, Mith H, Tarayre C, Taminiau B, Daube G, Fauconnier ML, Delvigne F. Impact of microbial composition of Cambodian traditional dried starters (Dombea) on flavor compounds of rice wine: combining amplicon sequencing with HP-SPME-GCMS. Front. Microbiol. 2018; 9: 894. DOI: https://doi.org/10.3389/fmicb.2018.00894

Yi C, Zhu H, Yang R, Bao J, He H, Niu M. Links between microbial compositions and volatile profiles of rice noodle fermentation liquid evaluated by 16S rRNA sequencing and GC-MS. LWT. 2020; 118: 108774. DOI: https://doi.org/10.1016/j.lwt.2019.108774

Similar Articles

You may also start an advanced similarity search for this article.