Determination of Depleted Uranium Concentration and Histopathological Changes in Local Iraqi Fish and Chickens

Main Article Content

Ghusoon Abdul Kareem Neamah,
Eman Hashim Yousif

Abstract

This study aimed to determine the concentration of depleted uranium and the main histopathological changes in local fish and chickens at a selected Iraqi area suspected to be polluted with uranium. Different locations of Al-Tuwaitha region (Southern of Baghdad) were surveyed randomly to collect a total of 15 samples from each animal species. The animals were sacrificed and dissected at the site of collection. Muscle samples were collected to determine uranium concentrations using nuclear fission track analysis with CR-39 detectors. For histopathological changes, sample tissues from fish (liver, gills, and kidney) and chickens (liver, kidney, and lung) were collected and fixed in 10% neutral buffered formalin. The results showed that there was a significant elevation in uranium concentration in both fish and chicken muscles (1.94±0.77 µg/Kg and 2.19±0.82 µg/Kg, respectively) compared with recommended uranium concentration. Histopathological examination showed several effects included congestion and thickening of blood vessels walls, vacuolation, necrosis, fibrosis and inflammatory cells infiltration in most tissue section of collected organs. In conclusion, the uranium residues that found in both fish and chicken meats could raise the concerns about consumption of both animal species that had been bred in Al-Tuwaitha, and could be an indicator of environmental pollution with uranium in this region.

Downloads

Download data is not yet available.

Article Details

How to Cite
Determination of Depleted Uranium Concentration and Histopathological Changes in Local Iraqi Fish and Chickens. (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 86-97. https://doi.org/10.30539/iraqijvm.v43i2.537
Section
Articles

How to Cite

Determination of Depleted Uranium Concentration and Histopathological Changes in Local Iraqi Fish and Chickens. (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 86-97. https://doi.org/10.30539/iraqijvm.v43i2.537

References

Allabaksh, M. B., Nookala, Y.; Suggala, V.; Gopireddy, V.; Subba, R. and Vinod, K. (2013). Assessment of Heavy Metal Content of Hen Eggs In The Surroundings of Uranium Mining Area, India Annals. Food Science and Technology, 14 (2): 344-349.

Muhannad, KM. (2010). Risk Assessment Related to Contamination of Terrestrial Food Chains by Atmospherically Deposited Lead particles. Al-Mustansiryiah J Sci., 21 (3): 103-16.

Rasheed, NH. (2013). The Spatial Distribution for The Radiation Pollution in lraq. J Research Diyala Humanity, (57): 729-63.

IAEA. International Atomic Energy Agency. (2010). Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, Technical Reports Series, 472, p. 194.

Jeambrun, M., Pourcelot ,L.; Mercat, C.; Boulet ,B.; Loyen, J.;Cagnat, X.and Gauthier-Lafaye, F. (2012). Study on Transfers of Uranium, Thorium and Decay Products from Grain, Water and Soil to Chicken Meat and Egg Contents. J Environ Monit., 14: 2170-2180.

Zou, W., Bia,H.,Zhao,L.;Li,K. and Han,R. (2011). Characterization and Properties of Zeolite as Adsorbent for Removal of Uranium (VI) from Solution in Fixed Bed Column. Journal of Radioanalytical and Nuclear Chemistry, 288 (3): 779-788.

Cuney, M.(2009). The Extreme Diversity of Uranium Deposits,” Mineralium Deposita., 44 (1) : 3-9.

ATSDR, (1999). Agency for Toxic Substances and Disease Registry. Toxicological Profile for Uranium (Update). Atlanta, Georgia, USA: U.S. Department of Health and Human Services, Public Health Service.

Brugge, D.; de Lemos, J. L. and Old mixon, B. (2005). Exposure Pathways and Health Effects Associated With Chemical and Radiological Toxicity of Natural Uranium: A Review. Rev Environ Health, 20: 177-193.

Gilliand, F.D., Hunt, WC., Pardilla, M. and Key, CR .(2000). Uranium Mining and Lung Cancer among Navajo Men in New Mexico and Arizona,1969 - 1993. J. Occup. Environ. Med., 42: 278-283.

Mulloy, K. B., Mulloy, KB.; James, DS.;Mohs, K. and Kornfeld ,M. (2001). Lung Cancer in A Nonsmoking Underground Uranium Miner. Environ. Health Perspect., (1009): 305-309.

Chen, J.; Meyerhof, D.P. and Tracy, B.L. (2004). Model Results of Kidney Burdens from Uranium Intakes. Health Phys., 86: 3-11.

Dublineau, I., Grandcolas, L.; Grison, S.; Baudelin, C.; Paquet, F.; Voisin, P.; Aigueperse, J. and Gourmelon, P. (2007). Modifications of Inflammatory Pathways in Rat Intestine Following Chronic Ingestion of Depleted Uranium. Toxicological Sciences, 98 (2): 458-468.

Lestaevel, P.; Bussy, C. and Paquet,F. (2005). Changes in Sleep-Wake Cycle after Chronic Exposure to Uranium in Rats,” Neurotoxicology and Teratology, 27 (6): 835-840.

Houpert, P.; Frelon, S.; Monleau, M.; Bussy, C.; Chazel, V and Paquet, F. (2007). Hetero-geneous Accumulation of Uranium in The Brain of Rats. Radiat Prot Dosimetry, 127(1-4), 86-89.

Souidi, M.,; Gueguen, Y. and Linard, C. (2005) .In vivo Effects of Chronic Contamination with Depleted Uranium on CYP3A and Associated Nuclear Receptors PXR and CAR in The Rat. Toxicology, 214 (1-2): 113-122.

Al-Shammari, A. M. (2015). Environmental Pollutions Associated to Conflicts in Iraq and Related Health Problems. Rev. Environ. Health, 31 (2): 245-50.

Al-Hamzawi, A.; Jaafar, M.; and Tawfiq, N. (2015). Concentration of Uranium in Human Cancerous Tissues of Southern Iraqi Patients Using Fission Track Analysis. Journal of radioanalytical and nuclear chemistry, 303 (3): 1703 - 1709.

Luna, L. G. (1968). Manual Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd Ed. Published by Graw-Hill Book Company. New York, Pp: 12-31.

SAS institute. (2010). SAS. Users Guide. Statistics Version 12th Edn. SAS institute Inc. Cary, N, USA.

Duncan, B.D. (1955). Multiple Range and Multiple F-test iocmetrice, 11: 1-42.

Fisenne. (1992). Tutorials from the Fifth International Symposium on the Natural Radiation Environment, Commission of the European Communities, Brussels, Belgium E, UR Report (in press).

Mitrović, B.; Vitorović,G.; Jovanović,M.; Lazarević-Macanović, M.; Andrić ,V., Stojanović, M., Daković, A. and Vitorović, D. (2014). Uranium Distribution in Broiler Organs and Possibilities for Protection. Radiat Environ Biophys., 53: 151-157.

Anees A. H. (2017). Determination of Uranium in Fishes Samples from Selected Regions in Iraq Using Neutron Activation Technique for Nuclear Track Detectors. AL-Qadisiyah Journal of pure Science, 22 (2).

Ahmed, M., Kundu, G., AL-Mamun, M., Sarka, S., Akter, M. and Khan, M. )2013).

Chromium (VI) Induced Acute Toxicity and Genotoxicity in Freshwater Stinging Catfish, Heteropneustes fossilis. Ecotoxicol Environ Saf., 92:64-70.

Jeon, Y. E.; Yin, X. F.; Chung, C. K. and Kang, I.J. (2013). Safety Evaluation of 30 kGy Irradiated Chocolate ice cream. J. Korean Soc. Food Sci. Nutr., 42: 898-903.

Jin, P.; Jae-Hun, K.; Myung, B.; Young eun, J.; Il Jun, K.; Han-Joon, H. and Ju Woon, L. (2011). Subacute Toxicity Study of 40 kGy Irradiated Ready-to-eat Bulgogi. J. Food Sci. Nutr., 16: 83-88.

Yin, X.F.; et al. (2012). Toxicity evaluation of irradiated tarakjuk for three months. J. Korean Soc. Food Sci. Nutr., 41: 1534-1539.

Zhu, J. T.; et al. (2012). Toxicological evaluation of chicken-breast meat with high-dose irradiation. J. Int. Agric., 11: 2088-2096.

Keith, S.; et al. (2013) .Toxicological profile for uranium. Agency for Toxic Substances and Disease Registry (ATSDR) (US), Atlanta.

Mitrovic´, B.; et al. (2014). Uranium distribution in broiler organs and possibilities for protection. Radiat Environ Biophys, 53: 151-157.

Kurttio, P.; et al. (2002). Renal effects of uranium in drinking water. Environ. Health Perspect., 110: 337-342.

Vicente-Vicente, L.; et al. (2010). Nephrotoxicity of uranium: pathophysiolo-gical, diagnostic and therapeutic perspe-ctives. Toxicol Sci., 118 (2): 324 - 347.

Homma-Takeda, S., et al., (2009) . Elemental imaging in kidney of adult rats exposed to uranium acetate. Nucl. Inst. Methods Phys. Res. B, 267: 2167-2170.

Goulet, R. R.; Fortin, C. and Spry, D. J. (2011). Uranium. In : Wood C M, Farrell A P, Brauner C J eds. Fish Physiology (Homeostasis and Toxicology of Non-Essential Metals). Elsevier Inc., 31: 391-428.

Cooley, H. M.; Evans, R. E. and Klaver-kamp, J. F. (2000). Toxicology of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquatic Toxicology 48: 495-515.

Hinton, D. E. and Laurén, D. J. (1990). Liver structural alterations accompanying chronic toxicity in fishes: potentioal biomarkers of exposure. Pp. 51-65. In: McCarthy, J. F. and L. R. Shugart (Eds.). Biomarkers of Environmental Contamination. BocaRaton, Lewis Publishers.

Takashima, F. and Hibya. T. (1995). An atlas of fish histology: normal and pathological features, 2nd ed. Tokyo, Kodansha.

Barillet, S. C.; et al. (2007). Bioaccumulation, oxidative stress, and neurotoxicity in Danio Rerio exposed to different isotopic compositions of uranium. Environmental Toxicology and Chemistry, 26 (3): 497 - 505.

Alkahemal-Balawi H. F.; Ahmad, Z. and Al-Akel, A. S . (2011). Toxicity bioassay of lead acetate and effects of its sublethal exposure

on growth, haematological parameters and reproduction in Clarias gariepinus. Afr. J. Biotech., 10 (53): 11 039-11 047.

Herraez, M. P. and Zapata, A. G. (1991). Structural characterization of the Melano-macrophage Centers (MMC) of Goldfish Carassius auratus. Eur. J. Morphol., 29 (2): 89-102.

Mazon, A. F.; Pinheiro, G. H. D. and Fernandes, M. N., (2002). Hematological and physiological changes induced by short-term exposure to copper in the freshwater fish, Prochilodus scrofa. Brazilian Journal of Biology, 62 (4A): 621-631.

Fernandes, M. N. and Mazon, A. F. (2003). Environmental pollution and fish gill morphology. In: Val, A. L. and B. G. Kapoor (Eds.). Fish adaptations. Enfield, Science Publishers, 203-231.

Rosety-Rodrguez, M., et al. (2002). Morpho-histochemical changes in the gills of turbot, Scophthalmus maximus L., induced by sodium dodecyl sulfate. Ecotoxicology and Environmental Safety, 51: 223-228.

Kroupova, H., et al. (2008). Effects of subchronic nitrite exposure on rainbow trout (Oncorhynchus mykiss). Ecotoxicol. Environ. Saf., 71: 813-20.

Barillet, S. et al. (2010). Ultrastructural effects on gill, muscle, and gonadal tissues induced in zebrafish (Danio rerio) by a waterborne uranium exposure. Aquat. Toxicol., 100: 295-302.

Lerebours, A.; et al. (2009). Comparative analysis of gene expression in brain, liver, skeletal muscles, and gills of zebrafish (Danio rerio) exposed to environmentally relevant waterborne uranium concentrations. Environ Toxicol Chem., 28 (6): 1271-1278.

Alazemi, B. M.; Lewis, J. W. and Andrews, E. B. (1996). Gill damage in the freshwater fish Gnathonemus petersii (family: Mormyridae) exposed to selected pollutants: an ultrastructural study. Environ. Technol., 17: 225-238.

Thophon, S. et al. (2003). Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ. Pollut., 121: 307-320.

Olojo, E.A.A. et al. (2005). Histopathology of the gill and liver tissues of the African catfish Clarias gariepinus exposed to lead. Afr. J. Biotechnol., 4: 117-122.

Ritola, O., et al. (2002). Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to

ozone and oxygen–supersaturated water. Aquaculture, 210: 1-19.

Nikinmaa, M. (2002). Oxygen-dependent cellular functions – why fishes and their aquatic environment are a prime choice of study, Comp. Biochem. Physiol. A 133: 1-16.

Buet, A.; Barillet, S., and Camilleri, V. (2005). Changes in oxidative stress parameters in fish as response to direct uranium exposure. Radioprotection, 40 (Suppl 1): 151-155.

Similar Articles

You may also start an advanced similarity search for this article.