Bio-distribution of Gold Nanoparticles in Tumor Mass and Different Organs in Implanted Mice with Mammary Adenocarcinoma AM3 (in vivo study)

Main Article Content

Sumaiah I Hussein
Saleha S. Shubber
Nahi Y . Yaseen

Abstract

Nanoparticles has many properties, especially in treatment of medical field, but the controversy continues about their cytotoxicity. Hence, this research was conducted to estimate the concentration of gold nanoparticles (GNPs) in tumor and other organs such as kidney, liver, and spleen after injection GNPs by two routes, intratumor and intraperitoneal to compare between two methods in mice implanted with mammary adenocarcinoma for 28 days. Atomic Absorption Spectroscopy was used to measure the GNPs concentrations. The results revealed that the GNPs concentrations were significantly (P≤0.05) increased (3.75±1.75, 2.42 ±0.31 ppm) in kidney tissue after intratumor and intraperitoneal administration, respectively, when compared to the other organs (liver and spleen), followed by tumor mass (2.66±0.01, 1.09 ±0.06 ppm) in tissue. While the concentrations of GNPs in spleen and liver were (1.40 ±0.33, 0.726 ±0.01) and (0.602 ±0.03, 0.517 ±0.02) after intratumor and intraperitoneal administration respectively. Also, the experiment showed that the injection by intratumor was more efficient than intraperitonial method for tumor treatment, so, the nanoparticles were cleared by responsible lymphoid organs of body.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bio-distribution of Gold Nanoparticles in Tumor Mass and Different Organs in Implanted Mice with Mammary Adenocarcinoma AM3 (in vivo study). (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 17-22. https://doi.org/10.30539/iraqijvm.v43i2.525
Section
Articles

How to Cite

Bio-distribution of Gold Nanoparticles in Tumor Mass and Different Organs in Implanted Mice with Mammary Adenocarcinoma AM3 (in vivo study). (2019). The Iraqi Journal of Veterinary Medicine, 43(2), 17-22. https://doi.org/10.30539/iraqijvm.v43i2.525

References

Buzea, C.; Ivan, I.; Blandino, P. and Robbie, K. (2007). Nanomaterial and Nanoparticle. Biointerphases, 2: 17 - 172.

Park, J. S.; Kim, D. H.; Kim, H. N.; Wang, C. J.; Kwak, M. K.; Hur, E.; Suh, K. Y.; An, S. S. and Levchenko, A. (2016). Directed Migration of Cancer Cells Guided by The Graded Texture of The Underlying Matrix. Nature Materials, 15: 792 - 801.

Aftab, S.; Shah, A; Nadhman, A.; Kurbanoglu, S.; AysılOzkan, S.; Dionysiou, D. D.; Shukla, S. S. and Aminabhavi, T. M. (2018). Nano-medicine: An Effective ool in Cancer Therapy. Int J Pharma., 5 (540): 132 - 149.

Singh, P.; Pandit, S. ;. Mokkapati,V. R.; Garg, A.; Ravikumar,V. and Mijakovic, I. (2018). Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer.Int J Mol Sci.,19 (7): 1979.

Ozdemir, D. I.; Gundogdu, E.; Ekinci, M. and Asikoglu, M. (2016). Nanoparticles: Form Diagnosis to Therapy. Int J Med Nano Res., 3(1) : 2378 - 3664.

Sood, M.. A. and Khudiar, K. K. (2019). Role of Salvia officinal,s silver Nano-particlesin Attenuating Renal Damage in Rats Exposed to Methotrexate (part 1). The Iraqi Journal of Veterinary Medicine., 42 (2): 7- 20.

Guo, J.; Rahme, K.; He, Y.; Li, L.; Holmes, J. D. and O'Driscoll, C. M. (2017). Gold Nano-particles Enlighten The Future of Cancer Theranostics. Int J Nano Med.V., 2017: 6131 -6152.

Huang, X.; Jain, P. K. and EL-Sayed, M. A. (2007). Gold Nanoparticles: Interesting Optical Properties and Recent Application in Cancer Diagnostics and Therapy. Nanomedicine, 2: 681 - 693.

Jo, M. R.; Bae, S. H.; Go, M.. R.; Kim, H. J.; Hwang, Y. G. and Choi, S. J. (2015). Toxicity and Biokinetics of Colloidal Gold Nanoparticles. Nanomaterials., 5 (2): 835 - 850.

Dobrovolskaia, M. A.; Patri, A. K.; Zheng, J.; Clogston, J. D.; Ayub, N.; Aggar-wal, P.; Neun, B. W.; Hall, J. B. and McNeil, S. E. (2009). Interaction of Colloidal Gold nanoparticles With Human Blood: Effects on Particle Size and Analysis of Plasma. protein Binding Profiles. Nanomedicine, 5: 106 - 117.

Chen, H.; Dorrigan, A.; Saad, S.; Hare, D. J.; Cortie, M. B. and Valenzuela, S. M. (2013). In vivo Study of Spherical Gold Nanoparticles: Inflammatory Distribution in Mice. PLOS ONE, 8: e58208.

Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhond, R. R. (2005). Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside The Cellular Compartment: A Microscopic Overview. Langmuir., 21: 10644 -10654.

Abdelhalim, M. A. and Jarrar, B. M. (2011). Gold Nanoparticles Induced Cloudy Swelling to Hydropic Degeneration, Cytoplasmic Hyaline Vacuolation, Polymorphism, Binucleation, Karyopyknosis, Karyolitic, Karyorrhexis and Necrosis in Liver. Lipids in Health and Disease, 10: 166.

Glazer, E.; Zhu, C.; Hamir, A. N.; Borne, A.; Thompson, C. S. and Curley, S. (2011). Biodistrubution and Acute Toxicity of Naked Gold Nanoparticles in a Rabbit Hepatic Tumor Model. Nanotoxicology, 5: 459 - 468.

Yaaqoob, L. A. (2016). Effect of Using Zinc oxide and Gold Nanoparticles on Experimental Induced Diabetic Rats. Ph.D. thesis, College of Sciences, University of Baghdad.

EL-Sayed, I. V.; Huang, X. and EL-Sayed, M. A. (2006). Selective Laser Photothermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles. Cancer Letters, 239: 129 - 135.

Kobayashi, H.; Watanabe, R. and Choyke, P.(2014).Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What is The appropriate target? Theranostics., 4 (1): 81 - 89.

Nie, S. (2010).Understanding and Overcoming Major Barriers in Cancer Nanomedicine. Nanomedicine., 5: 523 - 528.

Sadauskas, E.; Wallin, H.; Stoltenberg, M.; Vogel, U.; Doering, P.; Larsen, A. and Danscher, G. (2007). Kupffer Cells Are Central in The Removal of Nanoparticles From The Organism. Part Fiber Toxicol., 4: 10.

Lee, J.; Chatterjee, D. K.; Lee, M. H.and Krishnan, S. (2014). Gold Nanoparticles in Breast Cancer Treatment: Promise and Potential Pitfalls. Cancer Lett., 347: 46 - 53.

Longmire, M.; Choyke, P. L. and Kobayashi, H. (2008).Clearance Properties of Nano-sized Particles and Molecules as Imaging Agents: Consideration and Caveats. Nanomed., 3: 307-317.

Abdelhalim, M. A. (2013). Uptake of Gold Nanoparticles in Several Rat Organs after Intraperitoneal Administration In vivo: A Fluorescence Study. Biomed Res Int., V2013: 353695.

Rieznichenko, L. S.;Dybkova, S. M.; Gruzina, T. G.; Ulberg, Z. R.; Todor, I. N.; Lukyanova, N. Yu.; Shpyleva, S. I. and Chekhun, V. F. (2012). Gold Nanoparticles Synthesis and Biological Activity Stimultion In vitro and in vivo. Exp Oncol., 34: 25 - 28.

.Hainfeld,J.F;Slatkin,D.N. and Smilowitz,H.M. (2004).The Use of Gold nanoparticles to Enhance Radiotherapy in Mice. Physics. Med. Bio., 49: 309 - 315.

Goodrich, G. P.; Bao, L.; Gill-Sharp, K.; Sang, K. l.; Wang, J. and Payne, J. D. (2010). Photothermal Therapy in a Murine Colon Cancer Model Using Near-Infrared Absorbing Gold Nanorode. J Biomed Opt., 15: 018001

Similar Articles

You may also start an advanced similarity search for this article.