Effect of Zinc Oxide nanoparticals preparation from Zinc Sulphate (ZnSo4) against gram negative or gram positive microorganisms in vitro

Main Article Content

Khitam S. S
Alhtheal E.D
Azhar J.B.

Abstract

     This research aims to prepare ZnO NPs by using chemical bath deposition way from ZnSO4 and NaOH as starting materials. It was examined by X-ray diffraction, Scanning Electron Microscopy, Zeta potential and Fourier Transformation Infrared. Scanning Electron Microscopy images showed various morphological changes of ZnO nanoparticles obtained by the above method and the different magnification Scanning Electron Microscopy images of the nanoparticle and confirms that the Nano flowers are grown with well-defined morphology and diameters varying between 60-110 nm. The effect of Zinc oxide nanoparticles against bacteria staphylococcus aureus, E.coli and Pseudomous aeruginosa showed the ability of this substance to inhibit the growth of all types of bacteria in different concentrations. The percentage of survival bacteria was (2, 3.7 and 6%) for E.coli bacteria and (1, 1.5 and 5 %) for Pseudomous aeruginosa bacteria, while the percentage was (0.8, 1 and 1.5 %) for staphylococcus aurous respectively for all concentration.

Downloads

Download data is not yet available.

Article Details

How to Cite
Effect of Zinc Oxide nanoparticals preparation from Zinc Sulphate (ZnSo4) against gram negative or gram positive microorganisms in vitro. (2018). The Iraqi Journal of Veterinary Medicine, 42(1), 18-22. https://doi.org/10.30539/iraqijvm.v42i1.25
Section
Articles

How to Cite

Effect of Zinc Oxide nanoparticals preparation from Zinc Sulphate (ZnSo4) against gram negative or gram positive microorganisms in vitro. (2018). The Iraqi Journal of Veterinary Medicine, 42(1), 18-22. https://doi.org/10.30539/iraqijvm.v42i1.25

References

Shao-Wei, B.; Imali, A.M.; Thilini R. and Vicki H.G. (2011). Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27:6059-6068.

https://doi.org/10.1021/la200570n

Awodugba, A.O., Olawoyin, A.A.; Ilyas, A. O.; Oni E. A. and Adeyemo, A. (2013). Definnig structural and optical feature investigation in ZnO nanoparticles synthesized from Zinc Chloride (ZnCl2) and Zinc Sulphate (ZnSo4), Nigerian J. Physics., 24:371-376.

Nemmar, A.; Hoet, P.H.; Vanquickenborne, B.; Dinsdale, D.; Thomeer, M.; Hoylaerts, M.F.; Vanbilloen, H.; Mortelmans, L.; Nemery, B. (2002). Passage of 0049nhaled particles into the blood circulation in humans, Circulation. 105(4):411-414.

https://doi.org/10.1161/hc0402.104118

Claudia, R.; Michael, Z.; Ralf, W.; Susanne T.; Cornelia, W.; Monika, W.; Andreas, L.; Dirk, W. and Uta-Christina, H. (2015). Antibacterial Zinc Oxide nanoparticle coating of polyester fabrics, J. Textile Sci. Technol., 1:65-74. https://doi.org/10.4236/jtst.2015.12007

Ilican, S.; Caglar, Y. and Caglar, M. (2008). Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. Optoelectronics and Adv. Mat., 10(10): 2578 - 2583.

Xiangyin, L.; Chen, Y. and Xu, F. (2011). Structural and optical properties of ZnO thin films prepared by sol-gel method with different thickness. Appl. Surface Sci., 257:4031-4037. https://doi.org/10.1016/j.apsusc.2010.11.170

Singh, A. and Kumar, P. (2013) Structural, morphological and optical properties of sol gel processed CdZnO nanostructured films: effect of precursor solvents' Singh and Kumar. International Nano Letters, 3:57:1-6. https://doi.org/10.1186/2228-5326-3-57

Radyum, I.; Putri, R.A.; Wahyu, B.W.; Agus, S. and Nurul, T.R. (2012). Effect of PH variation on particle size and purity of nano Zinc Oxide synthesized by Sol-Gel method, Int. J. Engineering Technol., IJET-IJENS 12:06:5-9.

Kumar, S.S.; Venkateswarlu, P. (2013). Synthesis, characterization and optical properties of Zinc Oxide nanoparticles. In: Int. Nanoletter , 3:30:1-6. https://doi.org/10.1186/2228-5326-3-30

Duha, S.A.; Ali, L A.; Azhar, J.B. and Jhan, Y.R. (2015). Effect of (ZnO/MWCNTs) hybrid concentrations on microbial pathogens removal, Eng. Tech. J., 33(8):1402-1411. https://doi.org/10.30684/etj.2015.116735

Saha, D. and Upadhyayula, V. K.K. (2008). Carbon Nanotube-Based Biosensor for Pathogens Concentration and Detection, Final Report submitted to WRRI, New Mexico State University.

Li M., Lin D., Zhu L. (2013). Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to E. Coli, Environ. Pollut., 173:97-102. https://doi.org/10.1016/j.envpol.2012.10.026

Ma, H.; Williams P. and Diamond S. (2013). Ecotoxicity of manufactured ZnO nanoparticles. A review, Environ. Pollut., 172:76-85.

https://doi.org/10.1016/j.envpol.2012.08.011

Omar, F.M.; Aziz, H.A. and Stoll, S. (2014). Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsorption of Suwannee River Holmic Acid, Sci. Total Environ., Pp:195-201. https://doi.org/10.1016/j.scitotenv.2013.08.044

Peng, X.; Palma, S.; Fisher, N.S.; Wong, S.S. (2011). Effect of morphology of ZnO nanostructures on their toxicity to marine algae, Aquat. Toxicol., 102(3):186-196. https://doi.org/10.1016/j.aquatox.2011.01.014

Rizwan, W.; Young-Soon, K.; Amrita, M.; Soon, Y.; Hyung-Shik, S. (2010). Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity, J. Nanoscale Res. Lett., 5(10):1675-1681. https://doi.org/10.1007/s11671-010-9694-y

Ashe, B. (2011). A Detail investigation to observe the effect of zinc oxide and Silver nanoparticles in biological system. National Instit. Technol. M.Sc. (Roll NO- 607 bm004)

Similar Articles

You may also start an advanced similarity search for this article.