Genetic Variability and Antibacterial Sensitivity of Dichelobacter nodosus and Fusobacterium necrophorum Infection in Sheep Sulaimani Province, Kurdistan Region, Iraq

Main Article Content

Rizgar Rahim Sulaiman
Hardi Fattah Marif
Basim Abdulwahid Ali
Kwestan Najm Ali
Muhamad Omer Baba Shekh

Abstract





Footrot is a significant health problem in ruminants, especially sheep, caused by the bacteria Dichelobacter nodosus and Fusobacterium necrophorum. Infected animals may become lame and lose body condition. The aim of this study was to investigate whether sheep had mixed infections with D. nodosus and F. necrophorum, the global genetic relationships of both target genes (lktA and 16S rRNA genes) with different reference genes, and the degree of genetic heterogeneity between the standard serogroups of D. nodosus were studied. In addition, to detect the antibacterial sensitivity against these two pathogens. One hundred and seventy-five sheep interdigital spaces were investigated (2016-2022). The D. nodosus field isolate (Dn Sul/016-KY399851) showed 96% compatibility with other global isolates (NR_104942/USA, JN008724/India, and DQ016290/Sweden) when its 16S rRNA sequence was compared to some reference genes. The local isolate (Fn Sul/016- KY399852) and other IktA gene strains from other nations (FJ230831/New Zealand, JX678872/Australia, JX648295/India) were compared, and the results showed 99% and 96% identity. Additionally, within the multiple sequence alignment, a single nucleotide variation at position 389 (CA) was seen in the partial lktA sequence when compared to the field isolate (Fn Sul/16-KY399852). This modification corresponds to a switch at residue 130 from alanine (Ala) to glutamic acid (Glu). This study showed the initial molecular identification of D. nodosus and F. necrophorum from sheep with footrot in the Iraqi province of Sulaimani‎‎‎‎‎.


 


 


 





Downloads

Download data is not yet available.

Article Details

How to Cite
Genetic Variability and Antibacterial Sensitivity of Dichelobacter nodosus and Fusobacterium necrophorum Infection in Sheep Sulaimani Province, Kurdistan Region, Iraq. (2024). The Iraqi Journal of Veterinary Medicine, 48(1), 93-100. https://doi.org/10.30539/xxn4db22
Section
Articles

How to Cite

Genetic Variability and Antibacterial Sensitivity of Dichelobacter nodosus and Fusobacterium necrophorum Infection in Sheep Sulaimani Province, Kurdistan Region, Iraq. (2024). The Iraqi Journal of Veterinary Medicine, 48(1), 93-100. https://doi.org/10.30539/xxn4db22

References

‎1.‎ Ozgen EK, Cengiz S, Ulucan M, Okumus Z, Kortel A, Erdem H, et al. ‎Isolation and identification of Dichelobacter nodosus and ‎Fusobacterium necrophorum using the polymerase chain reaction ‎method in sheep with footrot. Acta Vet Brno. 2015;84(2):97-104. https://doi.org/10.2754/avb201584020097

‎2.‎ Thorley CM. A simplified method for the isolation of Bacteroides ‎nodusus from ovine foot-rot and studies on its colony morphology ‎and serology. J Appl Bacteriol. 1976;40(3):301-309. ‎‎https://doi.org/10.1111/j.1365-2672.1976.tb04178.x

‎3.‎ Caetano P, Bettencourt EV, Branco S. Reviewing Footrot in Sheep. J ‎Vet Sci Ani Husb. 2018;6(4):405.‎

‎4.‎ Ghimire SC, Whittington RJ, Dhungyel OP, Joshi HD, Egerton JR. ‎Diagnosis of footrot in goats: application of ELISA tests for iv ‎response to antigens of Dichelobacter nodosus. Vet Microbiol. ‎‎2002;87(3):237-251.‎ https://doi.org/10.1016/S0378-1135(02)00065-2

‎5.‎ John GH, Smith R, Abraham KJ, Ellis RP. Identification and grouping ‎of Dichelobacter nodosus, using PCR and sequence analysis. Mol Cell ‎Probes. 1999;13(1):61-65. https://doi.org/10.1006/mcpr.1998.0210‎

‎6.‎ Kennan RM, Dhungyel OP, Whittington RJ, Egerton JR, Rood JI. The ‎type IV fimbrial subunit gene (fimA) of Dichelobacter nodosus is ‎essential for virulence, protease secretion, and natural competence. ‎J Bacteriol. 2001;183(15):4451-4458. https://doi.org/10.1128/JB.183.15.4451-4458.2001

‎7.‎ Myers GS, Parker D, Al-Hasani K, Kennan RM, Seemann T, Ren Q, et ‎al. Genome sequence and identification of candidate vaccine ‎antigens from the animal pathogen Dichelobacter nodosus. Nat ‎Biotechnol. 2007;25(5):569-575. https://doi.org/10.1038/nbt1302

‎8.‎ Nagaraja TG, Narayanan SK, Stewart GC, Chengappa MM. ‎Fusobacterium necrophorum infections in animals: pathogenesis ‎and pathogenic mechanisms. Anaerobe. 2005;11(4):239-246. https://doi.org/10.1016/j.anaerobe.2005.01.007

‎9.‎ Wani SA, Samanta I. Current understanding of the aetiology and ‎laboratory diagnosis of footrot. Vet J. 2006;171(3):421-428. https://doi.org/10.1016/j.tvjl.2005.02.017

‎10.‎ Sun DB, Wu R, Li GL, Zheng JS, Liu XP, Lin YC, et al. Identification of ‎three immunodominant regions on leukotoxin protein of ‎Fusobacterium necrophorum. Vet Res Commun. 2009;33(7):749-‎‎755. https://doi.org/10.1007/s11259-009-9223-6

‎11.‎ Zhou H, Bennett G, Hickford JG. Variation in Fusobacterium ‎necrophorum strains present on the hooves of footrot infected ‎sheep, goats and cattle. Vet Microbiol. 2009;135(3-4):363-367. ‎‎https://doi.org/10.1016/j.vetmic.2008.09.084

‎12.‎ Maphill. Political map [Internet]. Maphill; [cited 2023 August 22]. ‎Available from

‎13.‎ Zhou H, Bennett G, Kennan RM, Rood JI, Hickford JG. Identification ‎of a leukotoxin sequence from Fusobacterium equinum. Vet ‎Microbiol. 2009;133(4):394-395. https://doi.org/10.1016/j.vetmic.2008.07.009

‎14.‎ Wani AH, Verma S, Sharma M, Wani A. Infectious lameness among ‎migratory sheep and goats in north-west India, with particular ‎focus on anaerobes. Rev Sci Tech. 2015;34(3):855-867. ‎‎https://doi.org/10.20506/rst.34.3.2401‎

‎15.‎ Kumar NV, Karthik A, Vijayalakhsmi S, Sreenivasulu D. Phylogenetic ‎analysis of Dichelobacter nodosus serogroup-specific fimA gene ‎from ovine footrot in Andhra Pradesh. Vet World. 2015;8(5):567-‎‎571. https://doi.org/10.14202/vetworld.2015.567-571

‎16.‎ Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the ‎sensitivity of progressive multiple sequence alignment through ‎sequence weighting, position-specific gap penalties and weight ‎matrix choice. Nucleic Acids Res. 1994;22(22):4673-4680. https://doi.org/10.1093/nar/22.22.4673

‎17.‎ Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: ‎Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol ‎Evol. 2013;30(12):2725-2729. https://doi.org/10.1093/molbev/mst197

‎18.‎ CLSI. Performance Standards for Antimicrobial Disk and Dilution ‎Susceptibility Tests for Bacteria Isolated from Animals. 4th ed. CLSI ‎document VET08. Wayne, PA: Clinical and Laboratory Standards ‎Institute; 2018.‎

‎19.‎ Best CM, Roden J, Phillips K, Pyatt AZ, Cogan T, Grogono-Thomas R, ‎et al. Characterisation of Dichelobacter nodosus on Misshapen and ‎damaged ovine feet: A longitudinal study of four UK sheep flocks. ‎Animals. 2021;11:1312. https://doi.org/10.3390/ani11051312‎

‎20.‎ Rather MA, Wani SA, Hussain I, Bhat MA, Kabli ZA, Magray SN. ‎Determination of prevalence and economic impact of ovine footrot ‎in central Kashmir India with isolation and molecular ‎characterization of Dichelobacter nodosus. Anaerobe. ‎‎2011;17(2):73-77. https://doi.org/10.1016/j.anaerobe.2011.02.003

‎21.‎ Wani SA, Farooq S, Kashoo ZA, Hussain I, Bhat MA, Rather MA, et al. ‎Determination of prevalence, serological diversity, and virulence of ‎Dichelobacter nodosus in ovine footrot with identification of its ‎predominant serotype as a potential vaccine candidate in J&K, ‎India. Trop Anim Health Prod. 2019;51(5):1089-1095. ‎‎https://doi.org/10.1007/s11250-018-01788-9

‎22.‎ Zhou H, Hickford JG. Extensive diversity in New Zealand ‎Dichelobacter nodosus strains from infected sheep and goats. Vet ‎Microbiol. 2000;71(1-2):113-123. https://doi.org/10.1016/S0378-1135(99)00155-8

‎23.‎ Çelebi Ö, Otlu S, Büyük F, Ermutlu CS, Sağlam AG, Çelik E, et al. The ‎isolation of Dichelobacter nodosus and identification by PCR from ‎ovine footrot in Kars district, Turkey. Kafkas Univ Vet Fak Derg. ‎‎2016;22:221-224.‎

‎24.‎ Clifton R, Giebel K, Liu NLBH, Purdy KJ, Green LE. Sites of ‎persistence of Fusobacterium necrophorum and Dichelobacter ‎nodosus: A paradigm shifts in understanding the epidemiology of ‎footrot in sheep. Sci Rep. 2019;9:14429.

https://doi.org/10.1038/s41598-019-50822-9

‎25.‎ Mateos E, Piriz S, Valle J, Hurtado M, Vadillo S. Minimum inhibitory ‎concentrations for selected antimicrobial agents against ‎Fusobacterium necrophorum isolated from hepatic abscesses in ‎cattle and sheep. J Vet Pharmacol Ther. 1997;20(1):21-23. https://doi.org/10.1046/j.1365-2885.1997.00043.x

‎26.‎ Jiménez R, Píriz S, Mateos E, Vadillo S. Minimum inhibitory ‎concentrations for 25 selected antimicrobial agents against ‎Dichelobacter nodosus and Fusobacterium strains isolated from ‎footrot in sheep of Portugal and Spain. J Vet Med B Infect Dis Vet ‎Public Health. 2004;51(5):245-248. https://doi.org/10.1111/j.1439-0450.2004.00764.x

‎27.‎ Dadgostar P. Antimicrobial Resistance: Implications and Costs. ‎Infect Drug Resist. 2019;(12):3903-3910. https://doi.org/10.2147/IDR.S234610

‎28.‎ Lechtenberg KF, Nagaraja TG, Chengappa MM. Antimicrobial ‎susceptibility of Fusobacterium necrophorum isolated from ‎bovine hepatic abscesses. Am J Vet Res. 1998;59(1):44-47.‎ https://doi.org/10.2460/ajvr.1998.59.01.44

‎29.‎ Archambault M, Rubin JE. Antimicrobial Resistance in Clostridium ‎and Brachyspira spp. and Other Anaerobes. Microbiol Spectr. ‎‎2020;8(1). https://doi.org/10.1128/microbiolspec.ARBA-0020-2017

‎30.‎ Kaler J, Wani SA, Hussain I, Beg SA, Makhdoomi M, Kabli ZA, Green ‎LE. A clinical trial comparing parenteral oxytetracyline and ‎enrofloxacin on time to recovery in sheep lame with acute or ‎chronic footrot in Kashmir, India. BMC Vet Res. 2012;8:12. ‎‎https://doi.org/10.1186/1746-6148-8-12

‎31.‎ Baba E, Fukata T, Arakawa A, Ikawa H, Takeda M. Antibiotic ‎susceptibility of Fusobacterium necrophorum from bovine hepatic ‎abscesses. Br Vet J. 1989;145(2):195-197. https://doi.org/10.1016/0007-1935(89)90105-X