Effect of Ultrasonic Extract of Capparis spinosa‎‎ Fruits Against E. coli‎‎ O157:H7‎

Main Article Content

Reham N Abdulridha
Ali H Saliem

Abstract





E. coli‎‎ O157:H7, is one of the main causes of diarrhea and the most prevalent bacterial infection that causes serious illnesses. This research was conducted to investigate the effect of Capparis spinosa fruit ultrasonic extract against resistant E. coli‎‎ O157:H7 was isolated from stools of calves that were suffering from diarrhea; the bacteria were identified by the Vitek 2 system and a latex agglutination test. C. spinosa‎‎‎ was extracted by ultrasonic waves water bath. The phytochemicals were carried out on C. spinosa fruit extract to detect the secondary metabolites. The MIC of the extract was calculated with concentrations of 400, 800, 1600, 3200, 6400, 12800 and 25600 51200 µg/mL by microdilution method ‎‎(checkerboard). While using a field-emission scanning electron microscope to observe the morphological alterations in E. coli‎‎ O157:H7 sample. The findings of this study revealed that the extract contains some biologically active compounds like alkaloids, flavonoids, steroids, glycosides, tannins, cumarines, saponins, quinones, and amino acids. That extract of C. spinosa‎‎‎ had a MIC of 6400 µg/mL and had a perfect action against E. coli‎‎. O157:H7 by forming vacuoles within the cells and that internal content had seeped out as pore formation. This finding could potentially provide an explanation for the traditional utilization of this plant material as an antibacterial agent‎.





Downloads

Download data is not yet available.

Article Details

How to Cite
Effect of Ultrasonic Extract of Capparis spinosa‎‎ Fruits Against E. coli‎‎ O157:H7‎. (2023). The Iraqi Journal of Veterinary Medicine, 47(1), 86-92. https://doi.org/10.30539/ijvm.v47i1.1529
Section
Articles

How to Cite

Effect of Ultrasonic Extract of Capparis spinosa‎‎ Fruits Against E. coli‎‎ O157:H7‎. (2023). The Iraqi Journal of Veterinary Medicine, 47(1), 86-92. https://doi.org/10.30539/ijvm.v47i1.1529

References

Aljeboury GH. A comparative study of amoxicillin sensitivity against Escherichia coli ‎isolates isolated from urinary tract infections. Iraqi Sci. 2017;417-426.‎

Al-Khyat FA. Enterohaemorrhagic E. coli O157 in locally produced soft cheese. Iraqi J. ‎Vet. Med. 2008;32(1):89-99.‎ https://doi.org/10.30539/iraqijvm.v32i1.770

AL-Imam MJ, Flayyih MT. Molecular study of regulatory gene (Ler) in Enteropathogenic ‎Escherichia coli (EPEC) of diarrheagenic patients. Iraqi J. Sci. 2020;61(10):2486-2493.‎ https://doi.org/10.24996/ijs.2020.61.10.5

Al-Taii DH, Yousif AA. Effects of E. coli O157:H7 experimental infections on rabbits. ‎Iraqi J. Vet. Med. 2019;43(1):34-42.‎ https://doi.org/10.30539/iraqijvm.v43i1.468

Yaseen SM, Saleh AM, Al-Zubaidy RS. Contamination of the local produced broilers ‎carcasses with Escherichia coli O157:H7 and its effect in public health in Diyala ‎province. Iraqi J. Vet. Medicine. 2017;41(2):113-117.‎ https://doi.org/10.30539/iraqijvm.v41i2.59

Constable PD, Hinchcliff KW, Done SH, Grünberg W. Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats. ‎‎11th ed. Edinburgh: Elsevier; 2016.‎

Saeedi P, Yazdanparast M, Behzadi E, Salmanian AH, Mousavi SL, Nazarian S, et al. ‎A review on strategies for decreasing E. coli O157:H7 risk in animals. Microb. patho. ‎‎2017;103:186-195.‎ https://doi.org/10.1016/j.micpath.2017.01.001

Najim NH. The synergistic bactericidal effects of bacteriocin and pressurization against E. ‎coli O157:H7 in raw milk. Iraqi J. Vet. Med. 2014;38(1):15-23.‎ https://doi.org/10.30539/iraqijvm.v38i1.249

Al–Dawmy FA, Yousif AA. Prevalence of E. coli O157:H7 in intestinal and urinary tract ‎infection in children. Int. J. Adv. Res. 2013;1(8):111-120.‎

Al-Tamimi A, Khatib M, Pieraccini G, Mulinacci N. Quaternary ammonium compounds in ‎roots and leaves of Capparis spinosa‎‎ L. from Saudi Arabia and Italy: investigation by ‎HPLC-MS and 1H NMR. Nat. Prod. Res. 2019;33(9):1322-1328.‎ https://doi.org/10.1080/14786419.2018.1475376

Zarei M, Seyedi N, Maghsoudi S, Nejad MS, Sheibani H. Green synthesis of Ag ‎nanoparticles on the modified graphene oxide using Capparis spinosa‎‎ fruit extract for ‎catalytic reduction of organic dyes. Inorganic Chem. Commun. 2021;123:108327.‎ https://doi.org/10.1016/j.inoche.2020.108327

AL-Azawi AH, Ghaima KK, Salih HH. Phytochemical, antibacterial and antioxidant ‎activities of Capparis spinosa‎‎ L. Cultivated in Iraq. Bio. Res. 2018;15(3):2611-2618.‎

Al-Khafagi MF, Mohammed DY. Study antibacterial activity of crude Capparis spinosa‎‎ ‎L. extracts against Helicobacter pylori infection and determine their bioactive ‎compounds. Iraqi J. Sci. 2023;64(2):503-512.‎ https://doi.org/10.24996/ijs.2023.64.2.1

Al Janabi NM, Al Badri SR. Effect of temperature and pH on antioxidant effectiveness of ‎Capparis spinosa‎‎ leaves. Iraqi J. Biotech. 2019;18(2):150-159.

Shahrajabian MH, Sun W, Cheng Q. Plant of the Millennium, Caper (Capparis spinosa‎‎ L.), ‎chemical composition and medicinal uses. Bull. Nat. Res. Cen. 2021;45:131.‎ https://doi.org/10.1186/s42269-021-00592-0

Mollica A, Zengin G, Locatelli M, Stefanucci A, Mocan A, Macedonio G, Carradori S, ‎et al. Anti-diabetic and anti-‎hyperlipidemic properties of Capparis spinosa‎‎ L.: in vivo and in vitro evaluation of its ‎nutraceutical potential. J. Funct. Food. 2017;35:32-42. https://doi.org/10.1016/j.jff.2017.05.001

Benzidane N, Aichour R, Guettaf S, Laadel N, Khennouf S, Baghiani A, et al. Chemical ‎investigation, the antibacterial and antifungal activity of different parts of Capparis ‎spinosa extracts. J. Drug Deliv. Therap. 2020;10(5):118-125.‎ https://doi.org/10.22270/jddt.v10i5.4388

Mazarei F, Jooyandeh H, Noshad M, Hojjati M. Polysaccharide of caper (Capparis spinosa‎‎ ‎L.) Leaf: extraction optimization, antioxidant potential and antimicrobial activity. ‎International J. Bio. Macro. 2017; 95:224-2231.‎ https://doi.org/10.1016/j.ijbiomac.2016.11.049

Arean AG, Ali TH, Muraih JK. Extracted chemical compounds from Capparis spinosa‎‎ ‎leaves and their antibacterial activity on pathogenic bacteria. J. Pharma. Sci. Res. 2019;11(2):603-608.‎

Abdulridha RN, Saliem AH. Antidiarrheal effect of Capparis spinosa‎‎ fruits extract. ‎Egypt. J. Hosp. Med. 2023; 91(1):3862-3869.‎ https://doi.org/10.21608/ejhm.2023.293470

Ghorbani M, Aboonajmi M, Ghorbani JM, Arabhosseini A. Effect of ultrasound extraction ‎conditions on yield and antioxidant properties of the fennel seed (Foeniculum vulgare) ‎extract. Iran. J. Food. 2017;14(67):63-73.‎

Velavan S. Phytochemical techniques-a review. World J. Sci. Res. 2015;1(2):80-91.‎

Paech K, Tracey MV. Modern Methods of Plant Analysis/Moderne Methoden der ‎Pflanzenanalyse. Spr. Sci. and Bus. Med. 2013; 2.‎

Egbuna C, Ifemeje JC, Maduako MC, Tijjani H, Udedi SC, Nwaka AC, Ifemeje MO. ‎Phytochemical test methods: qualitative, quantitative and proximate analysis. In. ‎Phyto. Chem. 2018; 381-426. Apple Academic Press.‎ https://doi.org/10.1201/9780429426223-15

Harborne JB. Phytochemical Methods. New Delhi: Springer (India) Pvt. Ltd; 2005.

Evans WC, Trease GE, editors. Pharmacognosy. 15th ed. London: WB Sanders Publishing Company; 2002. p. ‎‎277-280‎.‎

Harborne JB, editor. The Flavonoids: Advances in Research since 1980. London: Chapman and Hall; 1994.‎ https://doi.org/10.1007/978-1-4899-2911-2

Kapali J. Biological studies of some selected medicinal plants from Kathmandu Valley and isolation of ‎chemical compounds [dissertation]. Nepal: Tribhuvan University; 2021.‎

Bla BK, Dagnogo O, Kipré RG, Ballé OG, Trébissou JD, Djaman JA. Antiplasmodial activity of Anthocleista djalonensis leaves extracts against clinical isolates of Plasmodium falciparum and multidrug resistant K1 strains. World J. Adv. Res Rev. ‎‎2020;8(3):130-138.‎ https://doi.org/10.30574/wjarr.2020.8.3.0464

CLSI. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. CLSI supplement VET08. Wayne (PA): Clinical and Laboratory Standards Institute; 2018.

Veiga A, Maria da Graça TT, Rossa LS, Mengarda M, Stofella NC, Oliveira LJ, et al. Colorimetric microdilution assay: Validation of a standard method ‎for determination of MIC, IC50%, and IC90% of antimicrobial compounds. J. Micro. ‎Meth. 2019;162:50-61.‎ https://doi.org/10.1016/j.mimet.2019.05.003

Bajpai VK, Sharma A, Baek KH. Antibacterial mode of action of Cudrania tricuspidata ‎fruit essential oil, affecting membrane permeability and surface characteristics of food-‎borne pathogens. Food Cont. 2013; 32(2):582-590.‎ https://doi.org/10.1016/j.foodcont.2013.01.032

Reed SJ. Electron microprobe analysis and scanning electron microscopy in geology. Cambridge: ‎Cambridge University Press; 2005‎.‎ https://doi.org/10.1017/CBO9780511610561

Siracusa L, Kulisic-Bilusic T, Politeo O, Krause I, Dejanovic B, Ruberto G. Phenolic ‎composition and antioxidant activity of aqueous infusions from Capparis spinosa‎‎ L. and ‎Crithmum maritimum L. before and after submission to a two-step in vitro digestion ‎model. J Agri. Food Chem. 2011;59(23):12453-12459.‎ https://doi.org/10.1021/jf203096q

Tlili N, Khaldi A, Triki S, Munné-Bosch S. Phenolic compounds and vitamin antioxidants ‎of caper (Capparis spinosa‎‎‎). Plant Food Hum. Nut. 2010;65:260-265.‎ https://doi.org/10.1007/s11130-010-0180-6

‎Tagnaout I, Zerkani H, Mahjoubi M, Bourakhouadar M, Alistiqsa F, Bouzoubaa A, Zair T. ‎Phytochemical study, antibacterial and antioxidant activities of extracts of Capparis ‎spinosa L. Int. J. Pharma. Phyto. Res. 2016; 8(12):1993-2006.‎

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other ‎phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An ‎overview. Med. 2018; 5(3):93. https://doi.org/10.3390/medicines5030093

‎Shaito A, Thuan DT, Phu HT, Nguyen TH, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, ‎Eid AH, Pintus G. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, ‎and safety. Fron. Pharma. 2020;11:422.‎ https://doi.org/10.3389/fphar.2020.00422

Wojdyło A, Nowicka P, Grimalt M, Legua P, Almansa MS, Amorós A, Carbonell-‎Barrachina ÁA, Hernández F. Polyphenol compounds and biological activity of caper ‎‎(Capparis spinosa‎‎ L.) flowers buds. Plants. 2019; 8(12):539.‎ https://doi.org/10.3390/plants8120539

Hamad LR, Hussain AB, Hassan MH. A Pharmacological effect of Copparis spinosa extracts on pathogenic Escherichia coli. Int J Pharm Res. 2020;12(2):0975-2366. https://doi.org/10.31838/ijpr/2020.12.02.0142

Hameed AT, Zaidan DH, Dawd SM. The phytochemical constituent of Capparis spinosa‎‎ L. ‎and phenolic activity on pathogenic bacteria and blood parameters.‎ Sys Rev Pharm. 2021;12(1):1193-1198.

Oudah SK, Al-Salih RM, Gusar SH. Study the role of polyphenolic extract of Capparis ‎spinosa L. leaves as a hypoglycemic agent. Int. J. Sci. Eng. Res. 2014;5(5):1561-1575.‎

Yahia Y, Benabderrahim MA, Tlili N, Hannachi H, Ayadi L, Elfalleh W. Comparison of ‎three extraction protocols for the characterization of caper (Capparis spinosa‎‎ L.) leaf ‎extracts: Evaluation of phenolic acids and flavonoids by liquid chromatography–‎electrospray ionization–tandem mass spectrometry (LC–ESI–MS) and the antioxidant ‎activity. Anal Let. 2020;53(9):1366-1377.‎ https://doi.org/10.1080/00032719.2019.1706546

Hussein NM, Atea AM, Humide AO, Abdullah QK, Hardan SM. Isolation and diagnosis of ‎bacteria causing urinary tract infection in children. Sys Rev Pharm. 2020;11(1):76-79‎

Paim TG, Cantarelli VV, d'Azevedo PA. Performance of the Vitek 2 system software ‎version 5.03 in the bacterial identification and antimicrobial susceptibility test: ‎evaluation study of clinical and reference strains of Gram-positive cocci. Rev. Soci. ‎Bras. Med. Trop. 2014; 47:377-381.‎ https://doi.org/10.1590/0037-8682-0123-2013

Al-Taae DH. Isolation and identification of E. coli O157:H7 from diarrheal children and ‎animals and study the biochemical and pathological changes in rabbits [Thesis]. ‎Baghdad: University of Baghdad; 2015.‎

Khalaf FA. Prevalence of E. coli O157:H7 in Karballa province in human and animals and ‎in vivo study of rabbits antisera as a diagnostic tool [Thesis]. Baghdad: University of Baghdad; 2014.‎

Fesseha H, Mathewos M, Aliye S, Mekonnen E. Isolation and antibiogram of Escherichia ‎coli O157:H7 from diarrhoeic calves in urban and peri‐urban dairy farms of Hawassa ‎town. Vet Med Sci. 2022; 8(2):864-76.‎ https://doi.org/10.1002/vms3.686

Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, Banat IM. Resazurin-‎based 96-well plate microdilution method for the determination of minimum inhibitory ‎concentration of biosurfactants. Biotech. Letters. 2016; 38:1015-1019.‎ https://doi.org/10.1007/s10529-016-2079-2

Abu-Shama HS. Effect of Caper (Capparis spinosa‎‎) extracts as a natural antimicrobial ‎agent. J. Food Dairy Sci. 2019;10(7): 209-216.‎ https://doi.org/10.21608/jfds.2019.53494

‎Bazin D, Bouderlique E, Daudon M, Frochot V, Haymann JP, Letavernier E, et al. Scanning electron microscopy—a powerful imaging technique for the clinician. ‎Comptes Rendus. Chimie. 2022;25(S1):37-60.‎ https://doi.org/10.5802/crchim.101

Mahboubi M, Mahboubi A. Antimicrobial activity of as its usages in traditional medicine. ‎Herb. Polonica. 2014;60(1):39-48‎‎.‎‎ https://doi.org/10.2478/hepo-2014-0004

Similar Articles

You may also start an advanced similarity search for this article.