Effect of Perfluorooctanoic Acid on Kidney Function in Diabetic and Non-‎‎Diabetic Male Guinea Pigs

Main Article Content

Zahraa Kadim Shakir
Siti N. F. Muhsain
Raghad N. Al-Saadi

Abstract





Perfluorooctanoic acid (PFOA) is a synthetic fluor-surfactant chemical used widely in ‎products that resist oil, heat, grease, stains, and water. It is also used in producing other ‎fluoropolymers. The main sources of exposure to PFOA are water, soil, and animal-‎origin food (meat, fish, and dairy products). The aim of this study to evaluate the renal ‎function following oral gavage of sub-lethal dose of PFOA in diabetic and non-diabetic ‎guinea pigs. The experiment run for 4 weeks, total of 40 male guinea pigs, ‎‎(Cavia porcellus), were randomly selected and grouped into four equal groups. The first ‎group (G1) served as the negative control; 2nd group (G2) alloxan induced diabetic, 3rd ‎group (G3) non-diabetic was exposed to PFOA at 100 mg/kg BW orally/daily and 4th ‎Group (G4) was diabetic guinea pig exposed to PFOA at 100 mg/kg BW orally/daily. ‎Serum creatinine and histopathological alterations in the kidney tissue were evaluated. ‎Serum creatinine concentrations were significantly increased (P<0.05) in G3 and G4 ‎exposed to PFOA. High serum creatinine levels were suggesting impairment in kidney ‎function. Impaired kidney function was confirmed through histopathological changes ‎such as glomerular atrophy, severe necrosis, and degeneration of renal tubular epithelium ‎in guinea pigs that received PFOA in G3 and G4. In conclusion, the results confirmed ‎that PFOA was associated with renal damage and elevated creatinine concentrations in ‎diabetic and non-diabetic animals since PFOA itself can contribute to diabetes‎‎‎.





Downloads

Download data is not yet available.

Article Details

How to Cite
Effect of Perfluorooctanoic Acid on Kidney Function in Diabetic and Non-‎‎Diabetic Male Guinea Pigs. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 73-80. https://doi.org/10.30539/ijvm.v47i2.1515
Section
Articles

How to Cite

Effect of Perfluorooctanoic Acid on Kidney Function in Diabetic and Non-‎‎Diabetic Male Guinea Pigs. (2023). The Iraqi Journal of Veterinary Medicine, 47(2), 73-80. https://doi.org/10.30539/ijvm.v47i2.1515

References

‎1.‎ Feng J, Soto-Moreno EJ, Prakash A, Balboula AZ, Qiao H. Adverse ‎PFAS effects on mouse oocyte in vitro maturation are associated ‎with carbon-chain length and inclusion of a sulfonate group. Cell ‎Prolif. 2023;56(2):e13353. https://doi.org/10.1111/cpr.13353

‎2.‎ Kumar R, Whelan A, Cannon P, Sheehan M, Reeves L, Antunes E. ‎Occurrence of ‎emerging contaminants in biosolids in northern ‎Queensland, Australia. Environ. Pollut. ‎‎2023;330:121786.‎ ‎‎

https://doi.org/10.1016/j.envpol.2023.121786

‎3.‎ Teaf CM, Garber MM, Covert DJ, Tuovila BJ. Perfluorooctanoic acid ‎‎(PFOA): ‎environmental sources, chemistry, toxicology, and ‎potential risks. Soil Sediment ‎Contam. 2019;28(3):258-273.‎ ‎‎https://doi.org/10.1080/15320383.2018.1562420

‎4.‎ Sinclair GM, Long SM, Jones OA. What are the effects of PFAS ‎exposure at ‎environmentally relevant concentrations? ‎Chemosphere. 2020;258:127340.‎ ‎‎https://doi.org/10.1016/j.chemosphere.2020.127340

‎5.‎ Du D, Lu Y, Li Q, Zhou Y, Cao T, Cui H, et al. Estimating industrial ‎process ‎emission and assessing carbon dioxide equivalent of ‎perfluorooctanoic acid (PFOA) and ‎its salts in China. Sci. Total ‎Environ. 2023:161507.‎ https://doi.org/10.1016/j.scitotenv.2023.161507

‎6.‎ Liu D, Yan S, Wang P, Chen Q, Liu Y, Cui J, et al. Perfluorooctanoic ‎acid ‎‎(PFOA) exposure in relation to the kidneys: A review of current ‎available literature. ‎Front. Physiol. 2023;14:1103141.‎ ‎‎

https://doi.org/10.3389/fphys.2023.1103141

‎7.‎ Wang Q, Ruan Y, Lin H, Lam PK. Review on perfluoroalkyl and ‎polyfluoroalkyl ‎substances (PFASs) in the Chinese atmospheric ‎environment. Sci. Total Environ. 2020;737:139804.‎ ‎‎

https://doi.org/10.1016/j.scitotenv.2020.139804

‎8.‎ Pan Y, Zhang H, Cui Q, Sheng N, Yeung LW, Sun Y, et al. Worldwide ‎‎distribution of novel perfluoroether carboxylic and sulfonic acids ‎in surface water. ‎Environ Sci Technol. 2018;52(14):7621-7629.‎

‎‎https://doi.org/10.1021/acs.est.8b00829

‎9.‎ Panieri E, Baralic K, Djukic-Cosic D, Buha Djordjevic A, Saso L. PFAS ‎molecules: a ‎major concern for the human health and the ‎environment. Toxics. 2022;10(2):44.‎ https://doi.org/10.3390/toxics10020044

‎10.‎ ‎Savoca D, Pace A, Arizza V, Arculeo M, Melfi R. Controlled uptake of ‎PFOA in adult ‎specimens of Paracentrotus lividus and evaluation of ‎gene expression in their gonads and ‎embryos. Environ Sci Pollut ‎Res Int. 2023;30(10):26094-26106.‎ https://doi.org/10.1007/s11356-022-23940-7

‎11.‎ Putri S, Ilyas M. Diabetes mellitus among workers exposed to ‎perfluorooctanoic acid. Indonesian J Comm Occup Medicine. ‎‎2021;1(2):107-103.‎ https://doi.org/10.53773/ijcom.v1i2.10.107-13

‎12.‎ Huang MC, Dzierlenga AL, Robinson VG, Waidyanatha S, DeVito MJ, ‎Eifrid MA, et ‎al. Toxicokinetics of perfluorobutane sulfonate (PFBS), ‎perfluorohexane-1-sulphonic ‎acid (PFHxS), and perfluorooctane ‎sulfonic acid (PFOS) in male and female Hsd: ‎Sprague Dawley SD ‎rats after intravenous and gavage administration. Toxicol. Rep. ‎‎2019;6:645-655.‎ https://doi.org/10.1016/j.toxrep.2019.06.016

‎13.‎ ‎Gleason JA, Cooper KR, Klotz JB, Post GB, Van Orden G. Health-‎based maximum ‎contaminant level support document: ‎perfluorooctanoic acid (PFOA). New jersey ‎drinking water quality ‎institute, Trenton, NJ, USA. 2017.‎

‎14.‎ ‎Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, et al. ‎Per‐‎and polyfluoroalkyl substance toxicity and human health review: ‎current state of ‎knowledge and strategies for informing future ‎research. Environ. Toxicol. Chem. 2021;40(3):606-630.‎ https://doi.org/10.1002/etc.4890‎

‎15.‎ European Food Safety Authority (EFSA). Perfluorooctane sulfonate ‎‎(PFOS), ‎perfluorooctanoic acid (PFOA) and their salts. Scientific ‎opinion of the panel on ‎contaminants in the food chain. EFSA J. ‎‎2008;6(7):653. https://doi.org/10.2903/j.efsa.2008.653

‎16.‎ Forsthuber M, Kaiser AM, Granitzer S, Hassl I, Hengstschläger M, ‎Stangl H, et al. Albumin is the major carrier protein for PFOS, PFOA, ‎PFHxS, PFNA and ‎PFDA in human plasma. Environ. Int. ‎‎2020;137:105324.‎ https://doi.org/10.1016/j.envint.2019.105324

‎17.‎ Bartholomeus A. Procedural review of health reference values ‎established by ‎enHealth for PFAS. Australia: Department of Health, ‎‎2016. 36 p.‎

‎18.‎ Forsthuber M, Kaiser AM, Granitzer S, Hassl I, Hengstschläger M, ‎Stangl H, ‎et al. Albumin is the major carrier protein for PFOS, PFOA, ‎PFHxS, PFNA and ‎PFDA in human plasma. Environ. Int. 2020; ‎‎137:105324.‎ https://doi.org/10.1016/j.envint.2019.105324

‎19.‎ Steenland K, Fletcher T, Savitz DA. Epidemiologic evidence on the ‎health effects of ‎perfluorooctanoic acid (PFOA). Environ. Health ‎Perspect. 2010;118(8):1100-1108.‎ https://doi.org/10.1289/ehp.0901827

‎20.‎ Brønnick KM. Potential health Effects of Per-and Poly-fluoroalkyl ‎Substances. ‎Research works of students, Latvia, Rīga Stradiņš ‎University, Faculty of Medicine. 2022.‎

‎21.‎ Margolis R, Sant KE. Associations between exposures to ‎perfluoroalkyl substances ‎and diabetes, hyperglycemia, or insulin ‎resistance: a scoping review. J Xenobiot. 2021;11(3):115-129. ‎‎

https://doi.org/10.3390/jox11030008

‎22.‎ Al-Juburi LI, AL-Sammarraae IA. The protective role of Salmonella ‎typhimurium-‎whole sonicated killed antigen and syzygium ‎aromaticum extract on the ‎histopathological changes against its ‎infection in rabbits. Iraqi J. Vet. Med. ‎‎2022;46(2):12-19.‎ ‎‎https://doi.org/10.30539/ijvm.v46i2.1399

‎23.‎ Assumaidaee AA, Ali NM, Fadhil AA. Effect of vitamin e as α-‎tocopherol acetate on ‎mercuric chloride-induced chronic ‎oxidoreductive stress and nephrotoxicity in rats: Iraqi ‎J. Vet. Med. ‎‎2019;43(2):98-108.‎ https://doi.org/10.30539/iraqijvm.v43i2.538

‎24.‎ Surour MA, Ramadhan SJ, Khudair KK. Effect of phosphatidylcholine ‎on ‎dyslipidemia and atherogenic index in high fructose exposed ‎rats. Iraqi J. Vet. Med. ‎‎2022; 46(2):20-28.‎

https://doi.org/10.30539/ijvm.v46i2.1404

‎25.‎ Kennedy GL, Butenhoff JL, Olsen GW, O'Connor JC, Seacat AM, ‎Perkins RG, et al. ‎The toxicology of perfluorooctanoate. Crit. Rev. ‎Toxicol. 2004;34(4):351-384.‎ https://doi.org/10.1080/10408440490464705

‎26.‎ Akunneh W, Aduema W. The effects of the leaf extracts of vernonia ‎amygdalina, ‎ocimum gratissimum and phyllanthus amarus on ‎blood glucose level of alloxan-induced ‎diabetic guinea pigs. LOJ Med. ‎Sci. 2018;2(1):000127. https://doi.org/10.32474/LOJMS.2018.02.000127

‎27.‎ Ibrahim BR, Khalil LW, Salih LA. Investigation of pomegranate seed ‎oil effects on ‎the renal function in alloxan-induced diabetic male ‎rabbits. Iraqi J. Sci. 2021:1843-1849.‎ https://doi.org/10.24996/ijs.2021.62.6.10

‎28.‎ Aslan M, Ozcan F, Kucuksayan E. Increased small dense LDL and ‎decreased ‎paraoxonase enzyme activity reveals formation of an ‎atherogenic risk in streptozotocin-‎induced diabetic guinea pigs. J. ‎Diabetes Res. 2013 .1;2013.‎ https://doi.org/10.1155/2013/860190

‎29.‎ Mohammed RJ, Al-Samarraae IA. Investigating the effect of three ‎antigens of ‎Citrobacter freundii on rabbit’s immune response. Iraqi ‎J. Vet. Med. 2021;045(1):56-62.‎ https://doi.org/10.30539/ijvm.v45i1.1043

‎30.‎ Shareef AB, Luaibi OK. Clinical and biochemical profile of Iraqi local ‎breed cows ‎during pregnancy and early lactation. Iraqi J. Vet. Med. ‎‎2020 28;44(E0):51-56.‎ https://doi.org/10.30539/ijvm.v44i(E0).1021

‎31.‎ Liu S, Li S, Wang B, Lin X, Wu Y, Liu H, et al. Scleral cross-‎linking ‎using riboflavin UVA irradiation for the prevention of myopia ‎progression in a ‎guinea pig model: blocked axial extension and ‎altered scleral microstructure. PloS One. ‎‎2016;11(11):e0165792.‎ ‎‎https://doi.org/10.1371/journal.pone.0165792

‎32.‎ Yousif RR, Rabee FO. Anatomical and histological study of kidney, ‎ureter and urinary ‎bladder in male guinea pig (Cavia porcellus). ‎Iraqi J. Vet. Med. 2019;43(1):75-84. https://doi.org/10.30539/iraqijvm.v43i1.476

‎33.‎ Bancroft JD, Gamble M. Theory and Practice of Histological ‎Techniques. 6th ed. Philadelphia : Churchill Livingstone Elsevier; ‎‎2008. 744 p.‎

‎34.‎ Razook BR, Al-ani AN, Mahmood MM. Hematological picture of ‎rabbits immunized ‎with Pseudomonas aeruginosa. Iraqi J. Vet. Med. ‎‎2020;44(E0):64-68. https://doi.org/10.30539/ijvm.v44i(E0).1023

‎35.‎ Jain RB, Ducatman A. Perfluoroalkyl acids serum concentrations ‎and their ‎relationship to biomarkers of renal failure: serum and ‎urine albumin, creatinine, and ‎albumin creatinine ratios across the ‎spectrum of glomerular function among US adults. ‎Environ. Res. ‎‎2019;174:143-151.

https://doi.org/10.1016/j.envres.2019.04.034

‎36.‎ Cakmak S, Lukina A, Karthikeyan S, Atlas E, Dales R. The association ‎between blood ‎PFAS concentrations and clinical biochemical ‎measures of organ function and ‎metabolism in participants of the ‎Canadian Health Measures Survey (CHMS). Sci. Total ‎Environ. ‎‎2022;827:153900.‎

https://doi.org/10.1016/j.scitotenv.2022.153900

‎37.‎ Takahashi M, Ishida S, Hirata-Koizumi M, Ono A, Hirose A. Repeated ‎dose and ‎reproductive/developmental toxicity of ‎perfluoroundecanoic acid in rats. J Toxicol Sci. ‎‎2014;39(1):97-108.‎

‎‎https://doi.org/10.2131/jts.39.97

‎38.‎ Abdel-Gawad FK, Khalil WK, El-Kady AA, Waly AI, Abdel-Wahhab ‎MA. ‎Carboxymethyl chitosan modulates the genotoxic risk and ‎oxidative stress of ‎perfluorooctanoic acid in Nile tilapia ‎‎(Oreochromis niloticus). J. Saudi Soc. Agric. Sci. ‎‎2016;15(1):57-66.‎ ‎‎https://doi.org/10.1016/j.jssas.2014.04.005

‎39.‎ Stanifer JW, Stapleton HM, Souma T, Wittmer A, Zhao X, Boulware ‎LE. ‎Perfluorinated chemicals as emerging environmental threats to ‎kidney health: a scoping ‎review. Clin J Am Soc Nephrol : CJASN. ‎‎2018;13(10):1479.‎ https://doi.org/10.2215/CJN.04670418

‎40.‎ Bonato M, Corrà F, Bellio M, Guidolin L, Tallandini L, Irato P, et al. ‎PFAS ‎environmental pollution and antioxidant responses: an ‎overview of the impact on human ‎field. Int. J. Environ. Res. Public ‎Health. 2020;17(21):8020. https://doi.org/10.3390/ijerph17218020

‎41.‎ Gong X, Yang C, Hong Y, Chung AC, Cai Z. PFOA and PFOS promote ‎diabetic renal ‎injury in vitro by impairing the metabolisms of ‎amino acids and purines. Sci. Total ‎Environ. 2019;676:72-86. ‎‎

https://doi.org/10.1016/j.scitotenv.2019.04.208

‎42.‎ ‎Rashid F, Ramakrishnan A, Fields C, Irudayaraj J. Acute PFOA ‎exposure promotes ‎epigenomic alterations in mouse kidney ‎tissues. Toxicol. Rep. 2020;7:125-132.‎ ‎‎

https://doi.org/10.1016/j.toxrep.2019.12.010

‎43.‎ Sharma B, Siddiqui M, Ram G, Yadav RK, Kumari A, Sharma G, Jasuja ‎ND. ‎Rejuvenating of kidney tissues on alloxan induced diabetic mice ‎under the effect of ‎Momordica charantia. Adv. Pharm. J. ‎‎2014;15:2014.‎ https://doi.org/10.1155/2014/439158

‎44.‎ Mohammed F, Tohamy A, Aita N. Toxicopathological and genotoxic ‎potential of ‎perfluorooctanoic acid administration in albino rats. ‎Egypt. J. Comp. Pathol. Clin. ‎Pathol. 2014; 27:1-17.‎

‎45.‎ Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB. Studies on the toxicological ‎effects of ‎PFOA and PFOS on rats using histological observation and ‎chemical analysis. Arch. ‎Environ. Contam. Toxicol. 2009;56:338-‎‎349.‎ https://doi.org/10.1007/s00244-008-9194-6

‎46.‎ ‎Arukwe A, Mortensen AS. Lipid peroxidation and oxidative stress ‎responses of ‎salmon fed a diet containing perfluorooctane sulfonic-‎or perfluorooctane carboxylic ‎acids. Comp. Biochem. Physiol. Part - ‎C: Toxicol. Pharmacol. 2011;154(4):288-295.‎ ‎‎https://doi.org/10.1016/j.cbpc.2011.06.012

‎47.‎ ‎Al-Aaraje ZK, Al-Saadi RN. Toxico-pathological effects of ‎perfluorooctanoic acid ‎‎(PFOA) in normal and diabetic male guinea ‎pigs following oral exposure. J. Surv. Fish. ‎‎2023;10(3S):2906-2920.‎

‎48.‎ Manera M, Castaldelli G, Guerranti C, Giari L. Effect of waterborne ‎exposure to ‎perfluorooctanoic acid on nephron and renal ‎hemopoietic tissue of common carp ‎Cyprinus carpio. Ecotoxicol. ‎Environ. Saf. 2022;234:113407.‎ https://doi.org/10.1016/j.ecoenv.2022.113407

‎49.‎ ‎Zhang H, Shen L, Fang W, Zhang X, Zhong Y. Perfluorooctanoic acid-‎induced ‎immunotoxicity via NF-kappa B pathway in zebrafish ‎‎(Danio rerio) kidney. Fish ‎Shellfish Immunol. 2021;113:9-19.‎ ‎‎

https://doi.org/10.1016/j.fsi.2021.03.004

‎50.‎ ‎Shearer JJ, Callahan CL, Calafat AM, Huang WY, Jones RR, Sabbisetti ‎VS, et al. ‎Serum concentrations of per-and polyfluoroalkyl ‎substances and risk of renal cell ‎carcinoma. J Natl Cancer Inst. ‎‎2021;113(5):580-587.‎ https://doi.org/10.1093/jnci/djaa143

‎51.‎ ‎Stanifer JW, Stapleton HM, Souma T, Wittmer A, Zhao X, Boulware ‎LE. ‎Perfluorinated chemicals as emerging environmental threats to ‎kidney health: a scoping ‎review. Clin. J. Am. Soc. Nephrol. ‎‎2018;13,1479–1492.‎ https://doi.org/10.2215/CJN.04670418

‎52.‎ ‎Wolf DC, Moore T, Abbott BD, Rosen MB, Das KP, Zehr RD, ‎Lindstrom AB, et al. ‎Comparative hepatic effects of ‎perfluorooctanoic acid and WY 14,643 in PPAR-α ‎knockout and ‎wild-type mice.Toxicol. Pathol. 2008, 36, 632–639.‎ ‎‎https://doi.org/10.1177/0192623308318216‎

‎53.‎ ‎Bartell SM, Vieira VM. Critical review on PFOA, kidney cancer, and ‎testicular ‎cancer. J Air Waste Manag Assoc. 2021;71(6):663-679.‎ ‎‎https://doi.org/10.1080/10962247.2021.1909668

‎54.‎ ‎Espartero LJ, Yamada M, Ford J, Owens G, Prow T, Juhasz A. Health-‎related toxicity ‎of emerging per-and polyfluoroalkyl substances: ‎Comparison to legacy PFOS and PFOA. ‎Environ. Res. ‎‎2022;212:113431.‎

https://doi.org/10.1016/j.envres.2022.113431‎

‎55.‎ Liu D, Yan S, Wang P, Chen Q, Liu Y, Cui J, et al. Perfluorooctanoic acid ‎‎(PFOA) ‎exposure in relation to the kidneys: A review of current ‎available literature. Front. ‎Physiol. 2023;14:1103141‎. ‎‎

https://doi.org/10.3389/fphys.2023.1103141‎