Assessment of Clinical, Respiratory and Metabolic Parameters in Neonatal Calves in Different Courses of Aspiration Pneumonia

Main Article Content

Erdem Gülersoy
Canberk Balıkçı
Adem Şahan
İsmail Günal

Abstract





Iatrogenic aspiration pneumonia (AP), often caused by incorrect drenching and ‎feeding with inappropriate bottles, is a frequent condition that can lead to sudden death ‎depending on the amount of aspirated fluid.  The evaluation of clinical scores‎ and blood ‎gas analytes may provide valuable insights into the complications that may arise due to AP in later ‎stages. In this study, the AP Group consisted of ‎23 Holstein breed calves aged 1-14 days, ‎which developed clinical signs such as cough, nasal and/or ocular discharge, and respiratory ‎distress after forced feeding with inappropriate bottles. The Control Group consisted of 11 healthy calves with similar characteristics. Clinical examinations, Calf ‎Health Score (CHS) evaluations, and venous blood gas analysis were performed. Based on anamnesis, calves with AP were classified as either Acute or Chronic AP. In clinical ‎examination, heart and respiratory rates were higher in the Acute AP Group compared to the ‎other groups (P<0.001). Total CHS was higher in the AP Group than that in the Control ‎Group (P<0.001). The pH, sO2, Cl and Hb levels of the AP Group were lower, and K and ‎lactate levels were higher compared to the Control Group (P<0.031). Among all groups, ‎the pCO2 levels were highest in the Acute AP Group (P<0.001). The Na level of the Chronic ‎AP Group was lower than that of the Control Group (P<0.05). The hematocrit level was ‎lowest in the Chronic AP Group (P<0.016).  These findings suggest that venous blood samples can be effectively used to classify the course of AP ‎in neonatal calves; significant alterations in venous blood gas, electrolyte levels, and CHS can ‎be observed in affected animals; sO2 and pCO2 levels are particularly important in ‎distinguishing between acute and chronic cases of AP; and clinical and laboratory findings may ‎be similar to those observed in healthy animals in chronic cases depending on the body’s ability ‎to compensate or tolerate the disease.





Downloads

Download data is not yet available.

Article Details

How to Cite
Assessment of Clinical, Respiratory and Metabolic Parameters in Neonatal Calves in Different Courses of Aspiration Pneumonia. (2023). The Iraqi Journal of Veterinary Medicine, 47(1), 1-10. https://doi.org/10.30539/ijvm.v47i1.1492
Section
Articles

How to Cite

Assessment of Clinical, Respiratory and Metabolic Parameters in Neonatal Calves in Different Courses of Aspiration Pneumonia. (2023). The Iraqi Journal of Veterinary Medicine, 47(1), 1-10. https://doi.org/10.30539/ijvm.v47i1.1492

References

Hattab J, Abbate JM, Castelli F, Lanteri G, Iaria C, Marruchella G. Aspiration pneumonia ‎with prominent alveolar mineralization in a dairy cow. Vet Sci. 2022; 9(3):128. doi: ‎https://doi.org/10.3390/vetsci9030128

Akyüz E, Merhan O, Aydın U, Sezer M, Kuru M, Karakurt E, Yıldız U, Bozukluhan K, Batı ‎YU, Yıldız A, Gökce G. Neopterin, procalcitonin, total sialic acid, paraoxonase-1 and ‎selected haematological indices in calves with aspiration pneumonia. Acta Vet Brno. ‎‎2022; 91(3): 115-124. https://doi.org/10.2754/avb202291020115

Scott P. Inhalation pneumonia (aspiration pneumonia) in adult cattle. Livestock. 2012; ‎‎17(7):17-19.

https://doi.org/10.1111/j.2044-3870.2012.00155.x

Wilkins PA, Woolums AR. Diseases of The Respiratory System. In: Smith BP, editor. Large ‎Animal Internal Medicine. 5th ed. St. Loius, Missouri: Saunders Elsevier; 2015.p. 623-‎‎628.‎

Dhillon KS, Kaur SJ, Gupta MA. Case report on aspiration pneumonia in a cow. J Entomol ‎Zool Stud. 2020;8(3):186-188. ‎

Poulsen KP, Mcguirk SM. Respiratory disease of the bovine neonate. Vet Clin N Am Food ‎Anim Pract. 2009; 25(1):121-137.‎ https://doi.org/10.1016/j.cvfa.2008.10.007

McGuirk SM, Peek SF. Timely diagnosis of dairy calf respiratory disease using a ‎standardized scoring system. Anim Health Res Rev. 2014; 15(2):145–147.‎ https://doi.org/10.1017/S1466252314000267

Gülersoy E, Şen İ. Sığırların Solunum Sistemi Hastalığı Kompleksi. Turkiye Klinikleri J ‎Vet Sci Intern Med-Special Topics. 2017;3(2):114-121.‎

Proulx J. Respiratory monitoring: arterial blood gas analysis, pulse oximetry, and end-tidal ‎carbon dioxide analysis. Clin Tech Small Anim Pract. 1999; 14(4):227-230. ‎

https://doi.org/10.1016/S1096-2867(99)80015-2

Šoltésová H, Nagy O, Tóthová C, Paulíková I, Seidel H. Blood gases, acid-base status and ‎plasma lactate concentrations in calves with respiratory diseases. Acta Vet. 2015; ‎‎65(1):111-124.‎ https://doi.org/10.1515/acve-2015-0009

Ozkanlar Y, Aktas MS, Kaynar O, Ozkanlar S, Kireççi E, Yıldız L. Bovine respiratory ‎disease in naturally infected calves: Clinical signs, blood gases and cytokine response. ‎Rev de Méd Vét. 2013; 163(3):123-130.‎

Araujo OR, Dıegues AR, Silva DC, Albertoni ACS, Louzada MER, Cabral EAF, Arkader R, ‎Afonso MR. Agreement and correlation of pH, bicarbonate, base excess, and lactate ‎measurements in the venous and arterial blood of premature and term infants. Rev Bras ‎Ter Intensiva. 2007; 19(3): 322-326.‎

https://doi.org/10.1590/S0103-507X2007000300009

McKeever TM, Hearson G, Housley G, Reynolds C, Kinnear W, Harrison TW, Kelly AM, ‎Shaw DE. Using venous blood gas analysis in the assessment of COPD exacerbations: a ‎prospective cohort study. Thorax. 2016; 71(3):210-215. ‎ https://doi.org/10.1136/thoraxjnl-2015-207573

Razi E, Nasiri O, Akbari H, Razi A. Correlation of arterial blood gas measurements with ‎venous blood gas values in mechanically ventilated patients. Tanaffos. 2012; 11(4):30-‎‎35. ‎

Güneş V, Atalan G. Comparison of ventral coccygeal arterial and jugular venous blood ‎samples for pH, pCO2, HCO3, Beecf and ctCO2 values in calves with pulmonary ‎diseases. Res Vet Sci. 2006; 81(1):148-151.‎

https://doi.org/10.1016/j.rvsc.2005.10.003

Giambelluca S, Fiore E, Sadocco A, Gianesella M, Vazzana I, Orefice T, Morgante M. ‎Evaluation of venous blood gas levels, blood chemistry and haemocytometric ‎parameters in milk fed veal calves at different periods of livestock cycle. Pol J Vet Sci. ‎‎2016; 19(4): 745-752. ‎

https://doi.org/10.1515/pjvs-2016-0094

Love WJ, Lehenbauer TW, Kass PH, Van Eenennaam AL, Aly SS. Development of a novel ‎clinical scoring systemfor on-farm diagnosis of bovine respiratory disease in pre-‎weaned dairy calves. Peer J. 2014; 2(2):238.‎ https://doi.org/10.7717/peerj.238

Budiman BJI, Tumbelaka A. Blood Gas Analysis in Aspiration Pneumonia: Acute and ‎Chronic Aspects. Paediatr Indones. 1999; 39(3-4): 65-66.‎

Lopez A, Martinson SA. Respiratory system, Mediastinum and Pleurae. In: Zachary JF, ‎editor. Pathologic Basis of Veterinary Disease. 6th ed. St. Louis, Missouri: Elsevier; ‎‎2017. p. 471–560.‎

https://doi.org/10.1016/B978-0-323-35775-3.00009-6

Shakespeare AS. Aspiration lung disorders in bovines: A case report and review. J S Afr ‎Vet Assoc. 2013; 83(1):1-7. ‎https://doi.org/10.4102/jsava.v83i1.921

Cortes-Puentes GA, Oeckler RA, Marini JJ. Physiology-guided management of ‎hemodynamics in acute respiratory distress syndrome. Ann Transl Med. 2018; 6(18): ‎‎353.‎ https://doi.org/10.21037/atm.2018.04.40

El Ghoussein H, Hegazi MO. Hypothermia with pneumonia: a rare presentation of ‎brucellosis. Med Princ Pract. 201; 20(5):485-487. ‎https://doi.org/10.1159/000328421

Son YG, Shin J, Ryu HG. Pneumonitis and pneumonia after aspiration. J Dent Anesth Pain ‎Med. 2017; 17(1):1-12.‎ https://doi.org/10.17245/jdapm.2017.17.1.1

Vahdatpour C, Sussman A, Mahr T. A case report of severe hypothermia complicated by ‎acute respiratory distress syndrome. Respir Med Case Rep. 2019; 100869.‎ https://doi.org/10.1016/j.rmcr.2019.100869

Marik P. Aspiration pneumonitis and aspiration pneumonia. New England Journal of ‎Medicine. 2001; 344(9):665–671.‎ https://doi.org/10.1056/NEJM200103013440908

McGuirk SM. Disease management of dairy calves and heifers. Vet Clin North Am Food ‎Anim Pract. 2008; 24(1):139–153. ‎https://doi.org/10.1016/j.cvfa.2007.10.003

İder M, Maden M. The importance of venous blood gas findings and clinical scores in ‎calves with bovine respiratory disease complex. Eurasian J Vet Sci. 2021; 37(1):16-24. ‎

Nagy O, Seidel H, Paulikova I, Mudron P, Kováč G. Use of blood gases and lactic acid ‎analyses in diagnosis and prognosis of respiratory diseases in calves. Bull Vet Inst ‎Pulawy. 2006; 50(2):149-152.‎

Ok M, Hadimli HH, Ider M. Evaluation of clinical efficacy of tilmicosin in the treatment of ‎respiratory system infections of calves. Eurasian J Vet Sci. 2019; 35(2):79-86.‎

https://doi.org/10.15312/EurasianJVetSci.2019.227

Tinawi M. Respiratory Acid-Base Disorders: Respiratory Acidosis and Respiratory ‎Alkalosis. Arch Clin Biomed Res. 2021; 5:158-168‎. https://doi.org/10.26502/acbr.50170157

İder M, Naseri, A, Ok M, Gülersoy E, Bas TM, Uney K, Parlak TM. Serum sRAGE and sE-‎selectin levels are useful biomarkers of lung injury and prediction of mortality in calves ‎with perinatal asphyxia. Theriogenology. 2022; 181:113-118. ‎https://doi.org/10.1016/j.theriogenology.2022.01.019

Bleul U, Lejeune B, Schwantag S, Kahn W. Blood gas and acid-base analysis of arterial ‎blood in 57 newborn calves. Vet Rec. 2007; 161(20): 688-691.‎ https://doi.org/10.1136/vr.161.20.688

Sadeghi S, Keivany E, Naderi Z, Purajam S, Nasri E. Electrolyte imbalance in patients with ‎COVID-19 pneumonia. J Renal Inj. 2021; 11(2):1-8.‎ https://doi.org/10.34172/jrip.2022.30859

Valli G, Fedeli A, Antonucci R, Paoletti P, Palange P. Water and sodium imbalance in ‎COPD patients. Monaldi Arch Chest Dis. 2004; 61(2):112-116.‎ https://doi.org/10.4081/monaldi.2004.708

Mo FF, Essackjee HC, Ballard HJ. Elevation of arterial potassium during acute systemic ‎hypoxia is abolished by alkalosis. J Card Surg. 2002; 17(4):342-346.

https://doi.org/10.1111/j.1540-8191.2001.tb01155.x

Hanzlicek GA, White BJ, Mosier D, Renter DG, Anderson DE. Serial evaluation of ‎physiologic, pathological, and behavioral changes related to disease progression of ‎experimentally induced Mannheimia haemolyticapneumonia in postweaned calves. Am ‎J Vet Res. 2010; 71(3):359-369.‎ https://doi.org/10.2460/ajvr.71.3.359

Fraser BC, Anderson DE, White BJ, Miesner MD, Lakritz J, Amrine D, Mosier DA. ‎Associations of variousphysical and blood analysis variables with experimentally ‎induced Mycoplasma bovis pneumonia in calves. Am J Vet Res. 2014; 75(2): 200-207.‎ https://doi.org/10.2460/ajvr.75.2.200

Alekhin Y, Zhukov M, Morgunova V, Dronova Y. The effect of the red blood cell system ‎disorders on the further developmentand productivity of Holstein calves that had had ‎bronchopneumonia. Vet Arh. 2021; 91(5): 473-481.‎ https://doi.org/10.24099/vet.arhiv.1079

Nagy O, Kováč G, Seidel H, Paulíková I. Selection of arteries for blood sampling and ‎evaluation of blood gases and acid-base balance in cattle. Acta Vet Brno. 2002; 71(3): ‎‎289-296.‎ https://doi.org/10.2754/avb200271030289

Gloria A, Chincarini M, Vignola G, Ferri N, Contri A. Venous blood gas parameters in healthy Mediterranean ‎buffalo calves in the first 72 hours of life. Theriogenology. 2020; 157:297–302. https://doi.org/10.1016/j.theriogenology.2020.08.013