Role of Alpha Lipoic Acid in Oxidant /Antioxidant Status and Gene Expression of Glutathione Reductase in Hydrogen Peroxide Exposed Rats: (Part -2)
Main Article Content
Abstract
This study was designated to evaluate the protective role of alpha lipoic acid against oxidative stress resulted by hydrogen peroxide on some oxidants/ antioxidants parameters and gene expression of glutathione peroxidase in adult Wistar rats. Forty adult male rats were randomly divided into four equal groups (10 rats /group) and were handled daily as follows for 56 days : Control group were intubated distal water and received ordinary tap water ; group T1 were intubated 60mg/kg B.W of alpha lipoic acid and received ordinary tap water ; group T2 were received hydrogen peroxide in tap water at concentration of 0.5% , while group T3 were intubated 60mg/kg B.W of alpha lipoic acid and received ordinary tap water containing 0.5% hydrogen peroxide. Fasting blood samples were collected at 0, 28 and 56 days of experimental periods for measurement of serum peroxynitrite and malondialdehyde concentrations, as well catalase activity. Furthermore, gene expression of glutathione reductase in liver was investigated. Administration of 0.5% hydrogen peroxide in drinking water (group T2) manifested a significant elevation in serum peroxynitrite and malondialdehyde with significant decrease in catalase and Glutathione, concentrations. Also, a significant decrease in gene expression of glutathione reductase was observed as compared to other treated groups. Nevertheless, rats in group T3 shows a significantly improvement in oxidant /antioxidant status with increase in folds changes of gene expression of glutathione reductase as compared to control and T2. In conclusion, supplementation of alpha lipoic acid to rats significantly reduced oxidative stress –induced by hydrogen peroxide and caused improvement of gene expression of glutathione reductase in liver via its antioxidant properties.
Received: 7/4/2018
Accepted: 2018/5/22
Publishing: 31/1/2019
Downloads
Article Details
How to Cite
References
Iskusnykh, I.Y.; Popova, T.N.; Agarkov, A.A.; de Carvalho, M.A.A. and Rjevskiy, S.G. (2013). Expression of glutathion peroxidase and glutathionreductase and level of free radical processes under toxic hepatitis in rats. J Toxicol., 870628.
https://doi.org/10.1155/2013/870628
Patel, R.P.;McAndrew, J.; Sellak, H.; White, C.R.; Jo, H.;Bruce A. Freeman, B.A. and Darley Usmar, V.M. (1999). Biological aspects of reactive nitrogen species. Biochim Biophys Acta., 1411(2-3)5: 385-400. https://doi.org/10.1016/S0005-2728(99)00028-6
Kalogeris, T.; Bao, Y. and Korthuis,R.J.(2014). Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology, 2: :702-714. https://doi.org/10.1016/j.redox.2014.05.006
Hampl, R.; Drábková, P.; Kanďár, R. and Stěpán, J. (2012). Impact of oxidative stress on male infertility. CeskaGynekol., 77: 241-245.
Lavranos, G.; Balla, M.; Tzortzopoulou, A.; Syriou, V. and Angelopoulou, R. (2012). Investigating ROS sources in male infertility: a common end for numerous pathways. ReprodToxicol., 34:298-307. https://doi.org/10.1016/j.reprotox.2012.06.007
Asadi, N.; Bahmani, M.; Kheradmand, A. andRafiean-Kopaei, M.(2017). The impact of oxidative stress on testicular function and the role of antioxidants in improving it: A review. J Cli Diagn Res., 11(5): IE01-IE05. https://doi.org/10.7860/JCDR/2017/23927.9886
Singh, U. and Jialal, I. (2008). Alpha-lipoic acid supplementation and diabetes. Nutr Rev., 66:646-657.
https://doi.org/10.1111/j.1753-4887.2008.00118.x
Gomes, M.B. and Negrato, C.A. (2014). Alpha lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metab Syndr., 6: 80. https://doi.org/10.1186/1758-5996-6-80
Bustamante, J.; Lodge, J.K.; Marcocci, L.; Tritschler, H.J.; Packer, L. and Rihn, B.H. (1998). Alpha-lipoic acid in liver metabolism and disease. Free Radic Biol Med., 24(6):1023-1039.https://doi.org/10.1016/S0891-5849(97)00371-7
Golbidi , S.; Badran, M. and Laher, I. (2011). Diabetes and Alpha Lipoic Acid. Fron Phasrmcol., 2:69. https://doi.org/10.3389/fphar.2011.00069
Bast, A. and Haenen, G.R. (1988). Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochim Biophys Acta., 16; 963(3):558-561. https://doi.org/10.1016/0005-2760(88)90326-8
Gurer, H.; Ozqunes, H. and Oztezcan,S. and Ercal, N.(1999). Antioxidant role of alpha lipoic acid in lead toxicity. Free Radic Biol Med., 27(1-2):75-81. https://doi.org/10.1016/S0891-5849(99)00036-2
Han, D.; Handelman, G.; Marcocci ,L.; Sen, C.K.; Roy, S.; Kobuchi, H.; Tritschler, H.J.; Flohe, L. and Packer, L. (1997). Lipoic acid increases de novo synthesis of cellular glutathione by improving cysteine utilization. Biofactors , 6:321-38.
https://doi.org/10.1002/biof.5520060303
Teichert, J.; Kern, J.; Tritschler, H.J.; Ulrich, H. and Preiss, R.(1998). Investigations on the pharmacokinetics of alpha-lipoic acid in healthy volunteers. Int J Clin Pharmacol Ther., 36:625-628.
Aram basic, J.; Mihailovic, M.; Uskokovic, A.;Dinic, S.; Grdovic, N.; Markovic, J.; Pozanovic, G.; Bajec, D. and Vidakovic, M.(2013). Alpha-lipoic acid upregulates antioxidant enzyme gene expression and enzymatic activity in diabetic rat kidneys through an O-GlcNAc-dependent mechanism. Eur J Nutr., 52(5): 1461-1473. https://doi.org/10.1007/s00394-012-0452-z
Ali, Y.F.; Desouky, O.S.; Selim, N.S. and Eeiba, M.(2015). Assessment of the role of α-lipoic acid against the oxidative stress of induced iron overload. J Rad Res App Sci., 8(1): 26-35. https://doi.org/10.1016/j.jrras.2014.10.009
Tatar, A,.; Korkmaz, M.; Yayla, M.; Gozeler, M.S.; Mutlu, V.; Halici, Z.; Uslu, H.; Korkmaz, H. and Selli, J .(2016). Anti-inflammatory and anti-oxidative effects of alpha-lipoic acid in experimentally induced acute otitis media. J Laryngol Otol., 130(7): 616-623.
https://doi.org/10.1017/S0022215116001183
Agarwal, A. and Prabakaran, S.A. (2005). Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol., 43:963-974.
Mansara, P.; Ketkar, M.;Deshpande, R.;Chaudhary, A.; Shinde, K.and Kaul Ghanekar,R. (2015). Improved antioxidant status by omega-3 fatty acid supplementation in breast cancer patients undergoing chemotherapy: a case series. J Med., 9:148.
https://doi.org/10.1186/s13256-015-0619-3
Gulak, P.; Dudchenko, A. and Zaycev, V.(1985). Hepatocyte: The Functional and Metabolic Properties. Moscow, Russia.
Pashkov, A.N.; Popov, S.S.; Semenikhina, A.V. and Rakhmanova, T.I.(2005). Glutathione system state and activity of some NADPH-producing enzymes in rats liver under melatonin action at norm and toxic hepatitis. Bull Exp Biol Med., 139(5):520-524.
https://doi.org/10.1007/s10517-005-0346-7
Vanuffelen, B. E.; Van Der Zee, J.; De Koster, B .M.; Vansteveninck, J. and Elferink, J .G. (1998). Intracellular but not extracellular conversion of nitroxyl anion into nitric oxide leads to stimulation of human neutrophil migration. Biochem J., 330(2):719-722.
https://doi.org/10.1042/bj3300719
Placer, Z. A.; Cushman,L.L. and B. C. Johnson. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem., 16:359-364. https://doi.org/10.1016/0003-2697(66)90167-9
Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta., 196:143-152. https://doi.org/10.1016/0009-8981(91)90067-M
Cheon, M.; Park, D.; Kim, K.; Park, S.D. and Ryu, K. (1999). Homologous upregulation of GnRH receptor mRNA by continuous GnRH in cultured rat pituitary cells. Endocrine, 11(1): 49-55. https://doi.org/10.1385/ENDO:11:1:49
Livak, K. J, and Schmittgen, T. D., (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262
Snedecor, G.W. and Cochran, W.G. (1973). Statistical Methods. 6th ed. the Iowa state University press.399-408.
Rahim,S.M.; Taha, E.;M.; Mubark, Z.M.;Aziz, S.S.;Simon,K.D. and Mazlan, A.G.(2013) . Protective effect of cymbopogon citratus on hydrogen peroxide-induced oxidative stress in the reproductive system of male rats. Syst Biol Reprod Med., 59(6): 329-336.
https://doi.org/10.3109/19396368.2013.827268
Al-Rubaei, Z.M.; Mohammad, T.U. and Ali, L.K. (2014). Effects of local curcumin on oxidative stress and total antioxidant capacity in vivo study. Pak J Biol Sci., 17(12): 1237-1241. https://doi.org/10.3923/pjbs.2014.1237.1241
Nowfel, A. J. and Al-Okaily, B.N. (2017). Oxidative stress: Role of Eruca sativa extract on male reproduction in rats. Adv. Anim Vet Sci., 5(1): 39-46. https://doi.org/10.14737/journal.aavs/2017/5.1.39.46
Song, P.; Wu, Y.; Xu, J.; Xie, Z.; Dong, Y.; Zhang, M. and Zou, M. (2007). Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (Phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation, 21:21-25. https://doi.org/10.1161/CIRCULATIONAHA.107.716498
Barber, S.C. and Shaw, P.J. (2010). Oxidative stress in ALS: Key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med., 48: 629-641. https://doi.org/10.1016/j.freeradbiomed.2009.11.018
Schimizu, S.; Ishii, M.; Miyasaka, Y.; Wajima,Y. and Negoro, T. et al., (2005). Possible involvement of hydroxyl radical on the stimulation of tetrahydrobiopterin synthesis by hydrogen peroxide and peroxynitrite in vascular endothelial cells. Intern J Biochem Cell Biol .,37 : 864-875. https://doi.org/10.1016/j.biocel.2004.11.003
Kefer, J.C.; Agarwal, A. and Sabanegh, E.(2009). Role of antioxidants in the treatment of male infertility. Int J Urol., 16:449-457.
https://doi.org/10.1111/j.1442-2042.2009.02280.x
Anees,S.; Parveen, N.; Mohammed, S. and Ishaq,M. (2014). Evaluation of oxidative stress and antioxidant status in relation to glycemic control in type 1 and type 2 diabetes mellitus patients. Am J Biochem Mol Biol., 4: 93-98.
https://doi.org/10.3923/ajbmb.2014.93.98
Chelikani, P.; Fita, I. and Loewen, P.C. (2004). Diversity of structures and properties among catalase. Cellular and Molecular Life Sciences, 61 (2): 192-208. https://doi.org/10.1007/s00018-003-3206-5
Churbanova, I.Y. and Sevrioukova, I.F. (2008). Redox-dependent changes in molecular properties of mitochondrial apoptosis - inducing factor. J Bio Chem., 29(9): 5622-5631. https://doi.org/10.1074/jbc.M709147200
Choi, S.; Min, K.; Choi, I. and Kang, D.(2009). Effects of α-Lipoic Acid on the Antioxidant System in Prostate Cancer Cell chondrial apoptosis-inducing factor. J. Biol Chem., 283(9):5622-5631.
Li, Y.;Ma, Q.G.; Zhao, L.H.; Guo, Y.Q.; Duan, G.X.; Zhang, Y.Z. andJi, C. (2014).Protective efficacy of alpha-lipoic acid against aflatoxinB1-induced oxidative damage in the liver. Asian Australas J Anim Sci.,27(6): 907-915. https://doi.org/10.5713/ajas.2013.13588
Lebda, M.A.; Gad, S.B. and Rashed,R.R. (2015). The effect of lipoic acid on acrylamide-induced neuropathy in rats with reference to biochemical, hematological, and behavioral alterations. Pharm Biol., 53(8): 1207-1213.
https://doi.org/10.3109/13880209.2014.970288
Saad, EI. El-Gowilly, S.M. Sherhaa, M.O. and Bistawroos, A.E.(2010). Role of oxidative stress and nitric oxide in the protective effects of alpha lipoic acid and aminoguanidine against isoniazid rifampicin-induced hepatotoxicity in rats. Food Chem Toxicol., 48(7): 1869-1875.
https://doi.org/10.1016/j.fct.2010.04.026
El- Shenawy, N.S.;Hamza, R.Z.; Ismail, H.A.A. and Khaled, H.E. (2016). Efficacy of α-lipoic acid against oxidative stress and histopathological changes induced by dimethylnitrosamine in liver male mice. Am J Biochem Mol Biol., 6: 102-112.
https://doi.org/10.3923/ajbmb.2016.102.112
Khalaf, A. A.; Zaki, A.R. and Galal, M.K.(2017).The potential protective effect of α lipoic acid against nanocopper particle-induced hepatotoxicity in male rats. Hum Exp Toxicol., 36(9):881-891. https://doi.org/10.1177/0960327116674526
Mohamed, W.R.; Mehany, A.B.M. and Hussein, R.M. (2018). Alpha lipoic acid protects against chlorpyrifos-induced toxicity in Wistar rats via modulating the apoptotic pathway. Environ Toxicol Pharmacol., 59:17-23. https://doi.org/10.1016/j.etap.2018.02.007
Arivazhagan, P.; Panneerselvam, S.R. and Panneerselvam, P.C.(2003). Effect of DL-α-lipoic acid on the stutus of lipid peroxidation and lipids in aged rats. J Gentrol., 58(9): B788-B791. https://doi.org/10.1093/gerona/58.9.B788
Lukaszewicz-Hussain, A. and J. Moniuszko Jakoniuk, J. (2004). Liver catalase, glutathione peroxidase and reductase activity, reduced glutathione and hydrogen peroxide levels in acute intoxication with chlorfenvinphos, an organophosphate insecticide. Polish Journal of Environmental Studies. 13 (3): 303-309.
Tappel, A.L. (1978). Glutathione peroxidase and hydroperoxides. Methods Enzymol., 52:506-513.
https://doi.org/10.1016/S0076-6879(78)52055-7
Gaschler, M.M. and Stockwell, B.R.(2017). Lipid peroxidation in cell death. Biochem Biophys Res Comm., 482(3): 419-425.
https://doi.org/10.1016/j.bbrc.2016.10.086
Li, S.; Tan, H.; Wang, N.; Zhang, Z.; Lao, L.; Wong, C. and Feng, Y.(2015). The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci., 16(11): 26087-26124. https://doi.org/10.3390/ijms161125942
Rahman, I.; Antonicelli, F. and MacNee, W . (1999). Molecular mechanism of the regulation of glutathione synthesis by tumor necrosis factor-a and dexamethasone in human alveolar epithelial cells. J Biol Chem ., 274 (8) :5088-5096.
https://doi.org/10.1074/jbc.274.8.5088
IIyas , S. and Rehman, A. (2015). Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis. Environ Monti Assess., 187(1): 4115. https://doi.org/10.1007/s10661-014-4115-9
El-Baher, S.M.(2015). Effect of curcumin on hepatic enzymes activities and gene expression in rats intoxicated with aflatoxin B1. Phytotherapy Res., 29(1'): 134-140. https://doi.org/10.1002/ptr.5239
Al-Magrabi, O.A.(2015). Molecular and biochemical investigations on the effect of quercetin on oxidative stress induced by cisplatin in rat kidney. Saudi J Biol Sci., 187(1): 4115.
Nguyen, T.; Huang, H.C. and Pickett,C.B. .(2000). Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem., 275 (20) : 15466-15473. https://doi.org/10.1074/jbc.M000361200
Sant , K.M.; Hansen, J.M.; Williams,L.M.; TRan, N.L.; Goldstone, J.V.; Hanh, J.V. and Timmme Laragy, A.(2017). The role of Nrf1 and Nrf2 in the regulation of glutathione and redox dynamics in the developing zebrafish embryo. Redox Biology, 13:207-218.
https://doi.org/10.1016/j.redox.2017.05.023
Wagner, A.E.; Ernst, M.A.; Birringer,M.; Sancak, O.; Barella, L. and Rimbach, G.(2012). A Combination of Lipoic Acid Plus Coenzyme Q10 Induces PGC1α, a Master Switch of Energy Metabolism, Improves Stress Response, and Increases Cellular Glutathione Levels in Cultured C2C12 Skeletal Muscle Cells. Oxidative Med Cellu Longevity., volume 12, Article ID 835970, 9 pages.
https://doi.org/10.1155/2012/835970
El-Bishbishy, H.A.; Aly, H.A. and ElShafey, M.(2013). Lipoic acid mitigates bisphenol A induced testicular mitochondrial toxicity in rats. Environmental and Occupational Health, 29(10):875-887. https://doi.org/10.1177/0748233712446728
de Takashi, I. (2014). Effect of dietary α-lipoic acid on the mRNA expression of genes involved in drug metabolism and antioxidation system in rat liver. J Nutri., 112(30:295-308 .https://doi.org/10.1017/S0007114514000841