Histopathological evaluation of the platelets rich fibrin and bone marrow on healing of experimental induced distal radial fracture in local dogs 1ميسر غانم ذنون و 2محمد جواد عيسى و 3انتصار رحيم الكناني

Main Article Content

Thanoon M. G.
M. J Eesa
Alkenanny E.R

Abstract

   The aim of this study was to evaluate the effects of platelets rich fibrin and bone marrow on healing of distal radial fracture in local dogs. Twenty four adult animals (males and non-pregnant females of local breed dogs); had mean age 2.6 ±0.15 years and body weight 24.58 ±1.07 kgs were used. The experimental animals were randomly divided into three equal groups. First group (Control group), transverse fracture was induced at the distal portion of radial bone and immobilized by using Plaster of Paris, the fracture line didn't treated with any substance. Second group (Platelets Rich Fibrin group), in which the fracture line was surrounded by the platelets rich fibrin. Third group (Bone Marrow group) in which the fracture line was surrounded by autologous bone marrow. The histopathological results confirmed that the third group was the best one in its response for fractured bone healing in both periods sixth and tenth week, while the second group was came in the second rank, whereas the first group was the slowest response for fractured bone healing, represented by trabecular bone formation. The concentration rates of calcium and alkaline phosphatase enzyme increased at the weeks that follow surgical operation. In conclusion, the using of bone marrow and platelets rich fibrin are enhance the healing of distal radial fracture.         

Downloads

Download data is not yet available.

Article Details

How to Cite
Histopathological evaluation of the platelets rich fibrin and bone marrow on healing of experimental induced distal radial fracture in local dogs: 1ميسر غانم ذنون و 2محمد جواد عيسى و 3انتصار رحيم الكناني. (2022). The Iraqi Journal of Veterinary Medicine, 43(1), 11-20. https://doi.org/10.30539/iraqijvm.v43i1.465 (Original work published 2019)
Section
Articles

How to Cite

Histopathological evaluation of the platelets rich fibrin and bone marrow on healing of experimental induced distal radial fracture in local dogs: 1ميسر غانم ذنون و 2محمد جواد عيسى و 3انتصار رحيم الكناني. (2022). The Iraqi Journal of Veterinary Medicine, 43(1), 11-20. https://doi.org/10.30539/iraqijvm.v43i1.465 (Original work published 2019)

References

Ben Ali, L.M. (2013). Incidence, Occurrence, Classification and Outcome of Small Animal Fractures: A Retrospective Study (2005-2010). Intern. J. of Anim. and Veterin. Scienc., 7 (3): 191-196.

Harasen, G. (2003b). External coaptation of distal radius and ulna fractures. Can. Vet. J., 44 (12): 1010-1011.

Dohan Ehrenfest, D.M.; Rasmusson, L.; and Albrektsson, T. (2009). Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trend. Biotechno. 27 (3): 158-167.

Golebiewska, E.M. and Poole, A.W. (2015). Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev., 29(3): 153–162.

Travlos, G.S. (2006). Normal Structure, Function, and Histology of the Bone Marrow. Toxo. Patho., 34 (5): 548-565.

Laura, C.; Groza, I.; Oana, L.; Pall, E.; Pestean, C.; Cătană, R.; and Cenariu, M. (2008). Canine Mesenchymal Stem Cell Isolation from Bone Marrow Aspirates. Bullet. Uni.Agri.Sci.Vet.Med., 65(2): 96-101.

Gomes, I.S.; de Oliveira, V.C.; Pinheiro, A.O.; Roballo, K.C.S.; de Araujo, G.S.M.; Veronezi, J.C.; Martins, D.S.; and Ambrósio, C.E. (2017). Bone marrow stem cell applied in the canine veterinary clinics. Pesq. Vet. Bras., 37 (10): 1139-1145.

Pozzi, A. and Lewis, D.D. (2009). Surgical approaches for minimally invasive plate osteosynthesis in dogs. Vet Comp Orthop Traumatol, 22: 316–320.

Raaj, V.; Gautam, A.; Abhishek; Kumari, P. (2015). Platelet-Rich Fibrin (PRF): A New Generation Platelet Concentrate. Int J Dent Med Res,1(6):164-167.

Luna, LG. (1968): Manual of Histological Staining Methods of the Army Forces Institute of Pathology Division 3rd ed. New York, USA, McGraw Hill Book Company, pp:12-20.

McCartney, W.; Kiss, K. and Robertson, I. (2010). Treatment of distal radial/ulnar fractures in 17 toy breed dogs. Vet. Record J., 166 (14): 430-432.

Manchi, G.; Brunnberg, M.M.; Shahid, M.; Al Aiyan, A.; Chow, E.; Brunnberg, L.; and Stein, S. (2017). Radial and ulnar fracture treatment with paraosseous clamp-cerclage stabilization technique in 17 toy breed dogs. Vet. Rec. Ope., 4 (1), e000194: 1-9.

Crovace, A.; Favia, A.; Lacitignola, L; Di Comite, M.S.; Staffieri, F.; and Francioso, E. (2008). Use of autologous bone marrow mononuclear cells and cultured bone marrow stromal cells in dogs with orthopaedic lesions. Vet. Res. Commun., 32 (1): S39-44.

Oryan, A.; Alidadi, S.; and Moshiri, A. (2016). Platelet-rich plasma for bone healing and regeneration. Expert Opin. Biol. Ther., 16 (2): 213-232.

Malhotra, A.; Pelletier, M.H.; Yu. Y.; and Walsh, W.R. (2013). Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch. Orthop. Traum. Surg., 133: 153-165.

Claes, L.; Recknagel, S.; and Ignatius, A. (2012). Fracture healing under healthy and inflammatory conditions. Natur. Revi. Rheumat., 8: 133-143.

Loi, F.; Córdova, L.A.; Pajarinen, J.; Lin, T.; Yao, Z.; and Goodman, S.B. (2016). Inflammation, Fracture and Bone Repair. Bone J., 86: 119-130.

Sagalovsky, S.; and Schonert, M. (2014). The cell and molecular biology of bone fracture repair: role of the transforming growth factor-ß1 in activation reparative osteogenesis (review). Ortho. Traum. Prosthet., 3: 136-143.

Joo, M.W.; Chung, S.J.; Shin, H.S. and Chung, Y.G. (2017). The Effect of Autologous Platelet-Rich Plasma on Bone Regeneration by Autologous Mesenchymal Stem Cells Loaded onto Allogeneic Cancellous Bone Granules. Cel Tissu Orga., 203: 327–338.

Uthappa, K.B.; Jagadish pai, B.S.; Amit, K.W.; and Sreelakshmi, S. (2017). Platelet-Rich Fibrin: A REVIEW. Int. J. Adv. Res., 5 (11): 677-681.

Brianza, S.Z.; Delise, M.; Maddalena, F.M.; Amelio, P.D. and Botti, P. (2006). Cross-sectional geometrical properties of distal radius and ulna in large, medium and toy breed dogs. J. Biomech., 39 (2): 302-311.

Ben Ali, L.M. (2013). Incidence, Occurrence, Classification and Outcome of Small Animal Fractures: A Retrospective Study (2005-2010). Intern. J. of Anim. and Veterin. Scienc., 7 (3): 191-196.

Kumar, K. M.; Prasad, V. D.; Lakshmi, N. D.; and Raju, N.K.B. (2018). Evaluation of biochemical parameters for assessment of fracture healing in dogs. Phar. Innova. J., 7 (3): 577-580.

Fischer, V.; Haffner-Luntzer, M.; Amling, M.; and Ignatius, A. (2018). Calcium and Vitamin D in Bone Fracture Healing and Post-Traumatic Bone Turnover. Europ. Cel. Mater., 35: 365-385.

Kanwar, G.; Yadav, M.; Kumar, S.; Kirad, S.; and Jain, N. (2014). Serum alkaline phosphatase a prospective biomarker for assessment of progress of fracture healing. Intern. J. Resea. Applie. Natu. Soci. Sci., 3 (1): 15-20.

Sousa, C.P.; Dias, I.R.; Lopez-Peña, M.; Camassa, J.A.; Lourenço, P.J.; Judas, F.M.; Gomes, M.E.; And Reis, R.L. (2015). Bone turnover markers for early detection of fracture healing disturbances: A review of the scientific literature. An. Acad. Bras. Cienc., 87 (2): 1049-1061.

Similar Articles

You may also start an advanced similarity search for this article.