Molecular Detection of Canine Distemper Virus in Dogs in Baghdad Province, Iraq

Khalefa A Mansour*1, Saleem A Hasso2

1Department of Veterinary Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq, 2Department of Veterinary Internal and Preventive Medicine, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq

ABSTRACT

Canine distemper (CD) is an infectious disease that affects dogs and is extremely contagious and lethal, with a high mortality and morbidity rates. It infects a broad variety of animals, including primates, cetaceans, and carnivores causing a multi-systemic pathological condition. This study aimed to detect canine distemper virus (CDV) in blood samples of dogs clinically suspected with distemper at the Baghdad Veterinary Hospital, Baghdad, Iraq. CDV nucleoprotein gene (N) was detected in the whole blood of 46 dogs using reverse transcription-PCR (RT-PCR). The partially amplified (591 bp) fragment of the N gene was detected in 12 of 46 (26%) blood samples of dogs examined. Based on the partial sequencing data of the N gene, three local isolates might be similar to the NCBI-BLAST reference CDV virus isolates FJ977579.1 China, AF378705.1 USA, and AF305419.1 UK, while other strains EU072200.1 Hungary, AF164967.1 Switzerland, KU578257.1 Germany, and AB474397.1 Japan were found to be rather distinct. The isolates displayed a higher level of similarity with the Snyder Hill CDV strain and Onderstepoort CDV strain. There was less homology with the CDV strain A75/17 of Switzerland and 007Lm CDV strain of Japan. In conclusion, this study confirmed that CDV infection is present in domestic dogs in Iraq. This may indicate a risk of the disease spreading to parts of the country that may be disease-free.

Key terms: CDV, detection, RT-PCR, phylogenetic, nucleocapsid gene

INTRODUCTION

Canine distemper (CD) is an infectious respiratory illness that affects young dogs, particularly those between the ages of three and six months, resulting in high morbidity and, in those that have not been vaccinated, high mortality. The infection is mostly transmitted during the winter. Since 1760, it has been considered to be an acute or subacute infectious febrile disease defined by clinical signs of respiratory, gastrointestinal, integumentary, and central nervous systems, or a combination of these symptoms in domestic and wild dogs (1, 2).

Canine distemper virus (CDV) is the causative agent of CD. It is an enveloped viral particle with a diameter of 150 to 300 nm with a central core containing helices 15 to 17 nm in diameter (1). The CDV genome is a nonsegmented single-stranded negative sense RNA that encodes six structural proteins: nucleocapsid protein, phosphoprotein,
fusion protein, hemagglutinin protein, matrix protein, and large polymerase protein. CDV belongs to the family Paramyxoviridae and the genus Morbillivirus (3, 6, 7). The CDV mainly replicates in respiratory tract lymphatic tissues. Lymphopenia and a short-term fever emerge 3 to 6 days after infection (3–5).

In unvaccinated puppies, diagnosis of this disease, whether subacute or acute, must be made dependent on clinical symptoms and history. However, it was difficult to tell the difference between this disease and other types of illnesses, such as kennel cough when the disease is in its early stages. Anti-CDV IgM antibody identification can be used to make a serologic diagnosis (8, 9). However, owing to a detectable IgM antibody titer to CDV after 3 weeks of vaccination, it remains a problem in vaccinated pets (9).

Currently, dogs exhibiting clinical symptoms of a chronically antibiotic-resistant respiratory disease, or a neurological disease are tentatively diagnosed with CD. In advance stages of infection, i.e., when the central nervous system has already been infected with CDV, convulsions, lack of coordination, and myoclonus develop as more specific symptoms for CD diagnosis. Furthermore, CD is a complex disorder to be identified due to its wide range of clinical manifestations. Therefore, early detection of infection is essential for isolating sick dogs and administering adequate care. For this reason, to identify a lesser amount of virus in early infection, a sensitive, rapid, and specific method is required. Different methods for detecting CDV antigen or RNA have been used, but the majority of them are time-consuming and complicated, and they may generate inaccurate results, making them inappropriate for ante mortem diagnosis. New diagnostic methods are being developed as a result of recent advances in molecular biotechnological applications. The CDV RNA is detected in blood samples and cerebrospinal fluid of dogs suspected of developing the disease using a reverse transcription polymerase chain reaction (RT-PCR) (10, 11).

The aim of this study was to detect canine distemper virus for the first time in Iraq from blood samples of clinically ill dogs using a set of extremely specialized primer sequences.

MATERIALS AND METHODS

Sample Collection

Blood samples were collected from forty-six domestic dogs (most of them were not vaccinated) of both sexes at different ages which brought to Baghdad Veterinary Hospital between November 2020 and May 2021. Clinically, they were suspected of having CDV infection symptoms such as nasal discharge, excessive salivation, bronchitis, conjunctivitis, gastroenteritis, catarrhal pneumonia, and neurological disturbances.

The EDTA-treated blood samples were drawn into tubes, and 200 μL of the samples were used for viral RNA extraction. Before being used, the samples were stored at -70°C.

Viral RNA Extraction

The 46 blood samples were used to obtain the viral RNA using the AccuZol™ Total RNA extraction kit (Bioneer, Korea) according to the manufacturer’s instructions. A 200 μL of the blood sample was loaded into a 1.5 mL Eppendorf tube, and 1 mL of AccuZol™ reagent was added. Then, 200 μL of chloroform was added and shacked. The supernatant was moved to a new Eppendorf tube, which was then filled with 500 μL of isopropanol. The tube was inverted 4-5 times to blend the mixture, and then incubated at 4°C for 10 min. The RNA pellet was allowed to dry after the aqueous phase was discarded for 5 min drying. After that, the RNA was treated with Diethyl pyrocarbonate (DEPC).

The RNA concentration and purity were measured using a NanoDrop™1000 spectrophotometer (Thermo Scientific, USA) at absorbance of 260/280 nm at ratio 1.8, which indicates pure RNA.

Primers

For identification of the N gene of the genus Morbillivirus, the primers were designed using NCBI GenBank primer design tool for the gene accession number EF375619.1. The predicted RT-PCR products were 591 bp. The primers were produced by Macrogen Company, Korea, and their sequences were as follows: Forward: 5’-CAA GAG GAC TCG GGA CCA AC-3’, Reverse: 5’-TCT CCG ACC ACA CGT CTT TG-3’.

RT-PCR Conditions

OptiScript™ RT System RT/PCR PreMix (InTRON Biotechnology, Korea) was used to conduct one step reverse transcription PCR. Overall, a volume of 20 μL, including 8 μL of one step reverse transcription-PCR PreMix, 1 μL of the RNA template and gene specific primers, and distilled water up to a total volume of 20 μL were added and mixed thoroughly inside an Eppendorf tube. PCR thermocycler conditions included: the reaction of reverse transcription for one cycle at a temperature of 37°C for 30 min, followed by pre-denaturation at 95°C for 5 min for one cycle, denaturation at 95°C for 30 sec, annealing at 58°C for 30 sec, extension at 72°C for 30 min for 36 cycles, and final extension at 72°C for 5 min for one cycle. The product of RT-PCR was visualized under UV light after staining the 1% agarose gel with ethidium bromide.

DNA Sequencing and Phylogenetic Analysis

The PCR products, three positive samples, were sequenced using the AB-DNA sequencing system, Korea (Bioneer Company). The MEGA6 software package was used to perform phylogenetic analysis (neighbor-joining) with bootstrap statistical support. The analysis was carried
out using the UpGMA tree (Arithmetic Mean) in Version MEGA 6.0 and new optional Version 1.20.0 of the NCBI Multiple Sequence Alignment Viewer.

RESULTS

RT-PCR

Partial amplification of the viral N gene using common primers in the one-step reverse transcription polymerase chain reaction revealed presence of 12 viruses out of 46 (26.0%) that belong to the genus Morbillivirus in the dogs' blood samples. Figure 1 shows bands of approximately 591bp as expected.

Figure 1. Agarose gel electrophoresis (stained with ethidium bromide) showing the RT-PCR products (591 bp) of the partially amplified N gene of Morbillivirus isolation. M, 100 bp DNA marker ladder; lanes 1-12, some positive samples

Blood samples were the ideal samples for CDV ante-mortem diagnosis. However, based on the common primers used, this study identified presence of viruses belong to the genus Morbillivirus. The results also showed that the dogs were infected even though they had received the vaccine against the canine distemper disease.

Sequencing and Phylogenetic Tree Analysis

The N gene partial sequences of the three isolates identified in this study were found to be identical to CDV. The accession numbers of these sequences were deposited in the GenBank databases under the accession numbers MW682324.1, MW682325.1, and MW682326.1.

Results of the phylogenetic tree constructed based on these partial N gene sequences of the local Iraqi isolates were found to be closely related to NCBI-BLAST reference CDV isolates FJ977579.1 China, AF378705 USA and AF305419.1 UK. While the other strains EU072200.1 Hungary, AF164967.1 Switzerland, KU578257.1 Germany, and AB474397.1 Japan were found to be distinct (Figure 2).

According to the NCBI Multiple Sequence Alignment (Figure 2), the local isolates displayed a higher level of similarity with the "Snyder Hill" CDV strain (97.83%) and "Onderstepoort" CDV strain (97.25%), there is less homology to CDV strain "A75/17" Switzerland and "007Lm" Japan CDV strain (96.25 %) (Table 1).

Figure 2. Phylogenetic relationship of an Iraqi local isolate, according to global reference strains. The results of phylogeny tree construction of local Iraqi CDV virus isolates revealed to be genetically similar to the NCBI-BLAST reference CDV virus isolates (FJ977579.1 China, AF378705 USA, and AF305419.1 UK), while others (EU072200.1 Hungary, AF164967.1 Switzerland, KU578257.1 Germany, and AB474397.1 Japan) were found to be distinct
Iraqi CDV virus isolates were found to be closely related to NCBI-Blast reference CDV isolates, including FJ977579.1 China, AF378705 USA, and AF305419.1 UK. Others were determined to be distinct, including EU072200.1 Hungary, AF164967.1 Switzerland, KU578257.1 Germany, and AB474397.1 Japan. The current research demonstrated how these strains can spread through the Iraq areas by importing the infected domestic dogs from different countries. These results are similar to many studies that have proven the major role of transmitting the disease by importing infected animals to Iraq (21).

Multiple Sequence Alignment of the Iraqi isolate revealed higher level of similarity with the "Snyder Hill" CDV and Ondersteoport CDV strains. Several reports have shown that vaccine strains are excreted following CDV vaccination because these strains are used in the production of vaccines (22). This was observed in the present study where the CDV PCR-positive dogs were infected with the vaccine strain of this virus.

The study confirmed that CDV infection is present in domestic dogs in Iraq. This may indicate a risk of the disease spreading to parts of the country that may be disease-free. Regular vaccination programs should be conducted on a consistent basis to decrease the possibility of introducing contagious pathogens to Iraq by importing free dogs with complete vaccination, and dog owners must be informed by an educational program planed by the authorities regarding the importance of a full vaccine program for domestic dogs.

ACKNOWLEDGEMENTS

The researchers would like to thank the staff at Baghdad Veterinary Hospital for the initial diagnosis and sample collection, as well as the staff at the diagnostic laboratory at the College of Veterinary Medicine, University of Baghdad.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.
REFERENCES