Effect of potassium nitrate plus vitamin C in feed of rabbits on the some biochemical parameters
Saad Thabit Jassim Alrawi
Department of Veterinary Public Health, College of Veterinary Medicine, Al-Fallujah University, Iraq.
E-mail: saad_alrawe@yahoo.com
Received: 9/5/2016; Accepted: 24/7/2016

Summary
This study is conducted at investigating the effect of potassium nitrate and vitamin C in feed of the rabbits on the some biochemical parameters. Twenty eight adult New-Zealand rabbits were divided randomly into four groups (7 rabbits each), they were fed potassium nitrate and vitamin C for 16 weeks as follow: Group 1 (G1) fed potassium nitrate (168 mg/ kg B.W./ daily), group 2 (G2) fed potassium nitrate (168 mg/ kg B.W./ daily) and vitamin C (50 mg/ kg B.W./ daily), group 3 (G3) fed potassium nitrate (168 mg/ kg B.W./ daily) and vitamin C (100 mg/ kg B.W./ daily) and group 4 (G4) fed basal ration as control group. Blood were collected from heart at zero, eight, twelve and sixteen weeks. The results showed a significant increase (P<0.05) in cholesterol, triglyceride and blood nitrogen urea in the group that had fed potassium nitrate G1 compared with G4, whereas the groups that were fed vitamin C with potassium nitrate showed a mild decrease compared with group potassium nitrate that had been fed potassium nitrate alone (G1). In conclusion, the feeding rabbits with potassium nitrate caused an increase in cholesterol, triglyceride and blood urea concentration in the serum, whereas the vitamin C ameliorates this effect.

Keywords: Potassium Nitrate, Vitamin C, Rabbit, Biochemical parameters.

Introduction
The increase in the pollution of environment is a major and global problem, nitrate levels in water and food supplies have been increased during the last decades worldwide, the nitrate pollution has become a global concern, which may affect the food quality for daily use and threaten the human and animal health (1). Several studies reported that excessive nitrate intake causes many problems, such as methaemoglobinemia (2-4). El-Wakf (5) recorded that other possible outcomes of prolonged nitrate exposure include cancer, via the bacterial production of N-nitroso compounds, hypertension, increased infant mortality, birth defects of central nervous system, spontaneous abortion, growth retardation, diabetes, respiratory tract infections, and changes to the immune system. Moreover, nitrate toxicity also causes an elevation in glucose, cholesterol, aspartate transaminase and alanine transaminase in serum rats (6). The using antioxidant vitamins, such as vitamins A, E and C, to enhance protection against chemical agent-induced toxicity have been widely reported (7 and 8). Vitamin C is known to be one of the potent antioxidants that is capable of protecting various biological systems against the toxic effects of reactive species generated by different chemical agents (9-11), and shown to scavenge free radicals in the body (12 and 13). The aim of this study was to evaluate the effect of potassium nitrate and vitamin C in feed of the rabbits on the some biochemical parameters.

Material and Methods
Twenty-eight adult New-Zealand rabbits were with an age of 10 - 14 months and weight 1850-2100gm. Rabbits were divided randomly into four groups, each group consist of 7 rabbits: Group 1 (G1): Rabbits of this group were fed ration I (Table, 1) which was supplemented with potassium nitrate (168 mg/ kg B.W./ daily) according to (14) as potassium nitrate treated group. Group 2 (G2): Rabbits of this group were fed ration II (Table, 1) which was supplemented with potassium nitrate (168 mg/ kg B.W./ daily) and vitamin C (50 mg/ kg B.W./ daily) according to (15). Group 3 (G3): Rabbits of this group were fed ration III (Table, 1) which was supplemented with potassium nitrate (168 mg/ kg B.W./ daily) and vitamin C (100 mg/ kg B.W./ daily) according to (15). Group 4 (G4): Rabbits of this group were fed ration number IV (Table, 1) as control group. During the experiment, the
blood were collected from heart at zero, eight, twelve and sixteen weeks, the spectrophotometric methods kits (Biolabo) were used to measure the serum cholesterol, triglyceride and blood urea nitrogen (BUN) in serum according to (16).

The data obtained were expressed as means ± standard error (SE) and subjected to statistical analysis using one-way analysis of variance (ANOVA) and Least significant differences (LSD) post hoc test was performed by using SPSS-20 (Statistical Packages for Social Sciences, version 20) (17).

The effect of potassium nitrate supplement in feed of rabbits on the cholesterol levels are shown in (Table, 2). The cholesterol levels of all groups were non-significantly increased during the study period with the progression of experiment, while significant differences (P<0.05) were showed in last period between G1 and G4 at the sixteenth week. The highest triglyceride level was recorded in G1 (118.60±8.21 mg/dl) and showed a significant increases (P<0.05) in G1 as compared with groups that fed potassium nitrate + vitamin C (G2 and G3) and the results showed a significant increase (P<0.05) in groups that fed potassium nitrate G1, G2 and G3 as compare with G4 at the sixteenth week (Table, 3). The blood nitrogen urea concentrations are presented in (Table, 4). The results showed a significant increase (P<0.05) in G4, G3 and G2 as compare with G1. These elevated levels were observed on eighth and sixteenth week respectively.

The health risks of nitrate exposure have been widely evaluated in several vertebrates (18). Nitrate poisoning affects several biochemical parameters (19). The results revealed increased levels of cholesterol and triglyceride in serum of rabbits that were treated with nitrate. This might be due to effect of nitrate to the liver function (20). Liver plays an active important role in metabolism of cholesterol (21). Nitrate is a source of nitric oxide (NO) and other reactive oxygen as well as nitrogen species such as hydrogen peroxide (H2O2), peroxynitrite (ONOO-) and superoxide anion (O2-), which disturbs the balance between pro-oxidants and antioxidants in favor of the former, resulting in oxidative stress (22 and 23). Nakano and Tomlinson (24) recorded that stressful stimuli elicit a rapid secretion of glucocorticoids and catecholamines from adrenal tissue. Both of these hormones are known to produce hyperglycemic response (25), this results in agreement with other authors (5, 19 and 25), who indicated that a high nitrate intake causes a significant increase in lipid profile.

Table 1: Different nutritional rations fed to different rabbit groups.

<table>
<thead>
<tr>
<th>Ration Component</th>
<th>Ration I</th>
<th>Ration II</th>
<th>Ration III</th>
<th>Ration IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>31 %</td>
<td>31 %</td>
<td>31 %</td>
<td>31 %</td>
</tr>
<tr>
<td>Barley</td>
<td>15 %</td>
<td>15 %</td>
<td>15 %</td>
<td>15 %</td>
</tr>
<tr>
<td>Soya</td>
<td>10 %</td>
<td>10 %</td>
<td>10 %</td>
<td>10 %</td>
</tr>
<tr>
<td>Bran</td>
<td>30 %</td>
<td>30 %</td>
<td>30 %</td>
<td>30 %</td>
</tr>
<tr>
<td>Hay</td>
<td>10 %</td>
<td>10 %</td>
<td>10 %</td>
<td>10 %</td>
</tr>
<tr>
<td>Animal protein</td>
<td>2.46 %</td>
<td>2.46 %</td>
<td>2.46 %</td>
<td>2.46 %</td>
</tr>
<tr>
<td>KNO3</td>
<td>0.54 %</td>
<td>0.54 %</td>
<td>0.54 %</td>
<td>----------</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>----------</td>
<td>0.1 %</td>
<td>0.2 %</td>
<td>----------</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.7 %</td>
<td>0.7 %</td>
<td>0.7 %</td>
<td>0.7 %</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.3 %</td>
<td>0.3 %</td>
<td>0.3 %</td>
<td>0.3 %</td>
</tr>
</tbody>
</table>

Individual feed intake = 100±5 g
Convert factor of KNO3 to NO3 is 1.61

Results and Discussion

The effect of potassium nitrate supplement in feed of rabbits on the cholesterol levels are shown in (Table, 2). The cholesterol levels of all groups were non-significantly increased during the study period with the progression of experiment, while significant differences (P<0.05) were showed in last period between G1 and G4 at the sixteenth week. The highest triglyceride level was recorded in G1 (118.60±8.21 mg/dl) and showed a significant increases (P<0.05) in G1 as compared with groups that fed potassium nitrate + vitamin C (G2 and G3) and the results showed a significant increase (P<0.05) in groups that fed potassium nitrate G1, G2 and G3 as compare with G4 at the sixteenth week (Table, 3). The blood nitrogen urea concentrations are presented in (Table, 4). The results showed a significant increase (P<0.05) in G4, G3 and G2 as compare with G1. These elevated levels were observed on eighth and sixteenth week respectively.

The reduction in the levels of cholesterol and triglyceride in groups that fed potassium nitrate and vitamin C as compared with group that fed potassium nitrate alone, was due to the effect of vitamin C, which reduces nitrate toxicity by inhibiting endogenous nitrosation (1). Moreover, vitamin C is effective in the protection against oxidative damage in tissues and suppresses formation of nitrosamines (26), therefore, rabbits that fed vitamin C showed mild recovery from the nitrate toxicity,
whereas a 100 mg/kg B.W. level was more effective as compared to the 50 mg/kg B.W. level. Nitrate may cause multiple physiological impacts if the feed of animal have a high nitrate concentration (27).

Table 3: The effect of potassium nitrate and vitamin C as feed additive to the feed of rabbits on the serum triglyceride (mg/dl).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Time (week)</th>
<th>G₁</th>
<th>G₂</th>
<th>G₃</th>
<th>G₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td></td>
<td>74.28</td>
<td>70.53</td>
<td>72.59</td>
<td>74.81</td>
</tr>
<tr>
<td>8th</td>
<td></td>
<td>±8.14</td>
<td>±6.18</td>
<td>±9.24</td>
<td>±5.28</td>
</tr>
<tr>
<td>12th</td>
<td></td>
<td>99.85</td>
<td>89.14</td>
<td>80.08</td>
<td>84.14</td>
</tr>
<tr>
<td>16th</td>
<td></td>
<td>±6.95</td>
<td>±5.82</td>
<td>±9.13</td>
<td>±9.59</td>
</tr>
</tbody>
</table>

The different capital letters refer to significant differences between different groups at (P<0.05).

Table 4: The effect of potassium nitrate and vitamin C as feed additive to the feed of rabbits on the serum urea (mg/dl).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Time (week)</th>
<th>G₁</th>
<th>G₂</th>
<th>G₃</th>
<th>G₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td></td>
<td>45.97</td>
<td>47.05</td>
<td>44.47</td>
<td>45.12</td>
</tr>
<tr>
<td>8th</td>
<td></td>
<td>±8.59</td>
<td>±3.40</td>
<td>±3.19</td>
<td>±4.90</td>
</tr>
<tr>
<td>12th</td>
<td></td>
<td>58.45</td>
<td>57.26</td>
<td>56.20</td>
<td>48.85</td>
</tr>
<tr>
<td>16th</td>
<td></td>
<td>±3.22</td>
<td>±3.35</td>
<td>±4.22</td>
<td>±3.81</td>
</tr>
</tbody>
</table>

The different capital letters refer to significant differences between different groups at (P<0.05).

In the present study, exposure to nitrate caused elevation in urea concentration which obvious in groups that fed potassium nitrate, these may be explained by impaired kidney function that caused by nitrate toxicity (28). Nitrite effect on the process of absorption and reabsorption in the kidney tubules (5), urea is the principal product of protein catabolism, the reduction in total protein in animals exposed to environmental pollutants could be attributed to changes in protein and free amino acid metabolism, such as reduced protein synthesis or increased proteolytic activity or degradation (29). Helal et al. (30) investigated that serum protein of rats decreased due to the toxic effect of nitrite, while fast breakdown occurs, and increasing of nitrogen intake that came from potassium nitrate leads to an increase of urea in blood.

Conclusion, that the exposure for long period to potassium nitrate causes an increase in cholesterol, triglyceride and blood urea, whereas the vitamin C ameliorate this effect. Finlay, recommend that high levels of vitamin C (100 mg/kg B.W. daily) must be added to combat the toxic effect of potassium nitrate.

References

تأثير نترات الصوديوم وفيتامين ج على بعض الصفات الكيميائية في الأرانب
سعاد ثابت جاسم الراوي
فرع الصحة العامة، كلية الطب البيطري، جامعة الفلوجة، العراق.
E-mail: saad_alrawe@yahoo.com

الخلاصة
صممت هذه الدراسة لمعرفة تأثير إضافة نترات البوتاسيوم وفيتامين ج في غذاء الأرانب على بعض المعايير الكيميائية. استعملت ثلاثي وأربعون أرنبًا نيوزلنديًا حيث قسمت إلى أربع مجموعات عشوائية لكل مجموعة سبع أرانب، غذت هذه الأرانب على
نترات البوتاسيوم وفيتامين ج لمدة 16 أسبوعًا، وكما يأتي: المجموعة الأولى (G1) غذت بـ 611 ملغ/كم من وزن الجسم (كم من وزن الجسم/يوميا) وـ 168 ملغ/كم من وزن الجسم (kommun / يوميا) وفيتامين ج (50 ملغ/كم من وزن الجسم/ يوميا)، المجموعة الثانية (G2) غذت بـ 168 ملغ/كم من وزن الجسم (km/m من وزن الجسم/ يوميا) وفيتامين ج (100 ملغ/كم من وزن الجسم/ يوميا) و المجموعة الرابعة (G4) غذت على النظام الأساسي واعتبرت مجموعة سيطرة. أظهرت النتائج أن هناك تفوق معنوي (P<0.05) في كل من الكولسترول و السمنة الثلاثية والبيروفالك في المجموعة التي غذت بنترات البوتاسيوم (G1) للذين غذت بأنذارًا فيتامين ج مع بعضاً من الفيتامينات المفتاحية. الأرانب بـ نترات البوتاسيوم أدى إلى ارتفاع في تركيز الكولسترول، والسكارين الثلاثية والبيروفالك في المصل، في حين تم قلل فيتامين ج

الكلمات المفتاحية: نترات البوتاسيوم، فيتامين ج، أرانب، الصفات الكيميائية.