Protective role of Nigella sativa oil on renal damage induced by acetaminophen in male rats

Zena, M. Hamad
College of Basic Education, Wassit University, Iraq.
E-mail: Zena_alshammary@yahoo.com
Received: 16/9/2012; Accepted: 19/2/2013

Summary

Acetaminophen also called paracetamol is commonly used as analgesic and antipyretic agent which in high doses causes liver and kidney damage in man and animals. Nigella sativa oil have antioxidant properties. Thirty adult male rats were used and randomly divided into three equal groups. Group (A) untreated and served as control group; Group (B) rats were orally intubated (by gavages needle) acetaminophen suspension (150mg/kg B.W). Group (C) rats were given orally acetaminophen suspension (150mg/kg) plus 1ml/kg B.W of Nigella sativa oil for 42 days in both treated group. Fasting blood samples were collected at 21 and 42 days of experiment to study the following parameters: Serum creatinine concentration and blood urea nitrogen concentration. The results revealed a significant increase of acetaminophen group in serum creatinine and blood urea nitrogen concentrations as compression with GA. Animals treated with Nigella sativa oil plus acetaminophen (C) showed a significant decline in serum creatinine and blood urea nitrogen concentrations. In conclusion, the acetaminophen was effective in induction of oxidative stress and change in some biological markers related to kidney disease. Also it seems that Nigella sativa oil exerts protective actions against the damaging effect of acetaminophen.

Keywords: Nigella sativa oil, Kidney damage, Acetaminophen, Rats.
approach to ameliorate acetaminophen-induced renal damage would have very important clinical consequence (17). The present study designed to investigate the effect of Nigella Sativa oil on kidney damage induced by acetaminophen in male rats.

Materials and Methods

Thirty adult male albino Wister rats with a body weight 180-200 gm and aged ranged between (2.5-3) months were used. The animals were handled under standard laboratory conditions of a 12-hour light /dark cycle. Food and water available ad libitum along the experimental period. The animals were randomly divided into three equal groups. GA served as control group, GB rats were orally intubated (by gavages needle) acetaminophen suspension (paracetamol S.D.I Iraq) at a dose 150mg/kg B.W at concentration 500mg (18). GC rats were given orally acetaminophen suspension 150mg/kg at concentration 500mg plus 1 ml /kg B.W of Nigella sativa oil (kut manufactures information) for 42 day in both treated group (19). Fasting blood samples were collected at 21 and 42 days of experiment. Blood were drawn via cardiac puncture technique from anesthetized rats (intramuscular injection of ketamine 90 mg/kg B.W and xylazine 40 mg/kg B.W) and the serum was used for the assay of serum creatinin (SC) and blood urea nitrogen (BUN) concentration. Data were performed on the basis of analysis of variance (ANOVA) using significant level of (P<0.05). Specific group differences were determined using least significant differences (LSD), (20).

Results and Discussion

Serum blood urea nitrogen significantly increased (P<0.05) in Acetaminophen treated GB at show day 21 and 42 of the experiment comparing to Nigella sativa oil treated GC and GA. There was a significant reduction (P<0.05) in BUN concentration after 21 days of treatment in group compared with the GB and GA. At the end of the experiment day 42 a significant reduction (P<0.05) in BUN was observed after orally administration of Nigella sativa oil concurrently with acetaminophen in GC comparing to GB (Table, 1).

<table>
<thead>
<tr>
<th>Groups</th>
<th>GA Control BUN</th>
<th>GB Acetaminophen 150mg/kg B.W BUN</th>
<th>GC Acetaminophen 150mg/kg B.W + Nigella sativa oil (1 ml /kg B.W) BUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (Days)</td>
<td>21</td>
<td>23.22 ±1.17</td>
<td>43.67 ±5.51</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>22.5 ±1.03</td>
<td>48.55 ±5.81</td>
</tr>
</tbody>
</table>

Small letters denote differences between group at the level (P<0.05).

The result of (Table, 2) show a significant elevation (P<0.05) in SC of experimental group at the 21 and 42 days of experiment. However, at the end of the experiment, Nigella sativa oil caused significant decrease (P<0.05) in mean value of SC concentration in GC comparing to other groups.

<table>
<thead>
<tr>
<th>Groups</th>
<th>GA Control SC</th>
<th>GB Acetaminophen 150mg/kg B.W SC</th>
<th>GC Acetaminophen 150mg/kg B.W + Nigella sativa oil (1 ml /kg B.W) SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (Days)</td>
<td>21</td>
<td>0.53 ±0.60</td>
<td>1.29 ±1.47</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>0.51 ±0.55</td>
<td>1.39 ±1.51</td>
</tr>
</tbody>
</table>

Small letters denote differences between group at the level (P<0.05).

The results of the present study showed that daily oral intubation of acetaminophen over dose for 42 days caused a significant elevation in SC and serum BUN concentration (Tables, 1 and 2). The elevation of BUN and creatinine are considered for investigating drug induced nephrotoxicity in animals and man (21). The reason behind acetaminophen toxicity is the CYP-mediated conversion of acetaminophen to a highly reactive quinone imine, N-acetyl-p-benzoquinone imine. The fundamental role of NAPQI in the toxicity of acetaminophen has been supported by (22).

Blood urea nitrogen is found in the liver protein that is derived from diet or tissue.
sources and is normally excreted in the urine. In renal disease, the serum urea accumulates because the rate of serum urea production exceeds the rate of clearance (23). Elevation of urea and creatinine levels in the serum was taken as the index of nephrotoxicity (24). Urea level could be increased by many other factors such as dehydration, anti diuretic drugs and diet, whilst creatinine is, therefore, more specific to the kidney, since kidney damage is the only significant factor that increases serum creatinine level (25). Creatinine is derived from endogenous sources by tissue creatinine breakdown (23). In the present study, administration of nephrotoxic doses APAP to rats resulted in development of oxidative stress damage in renal tissues, also APAP induced nephrotoxicity showed a significant (P<0.05) increase in the serum urea and creatinine concentrations in the GB rat when compared to the normal GA. Therefore significant increases in urea and creatinine levels reported in this study (Table, 2) the kidney was adversely affected by acetaminophen administration. Kidney dysfunction and nephrotoxicity induced by acetaminophen in present investigation are consequences of oxidative stress.

*Nigella sativa* oil exerts protective actions against damaging effect acetaminophen on renal system causing significant decrease in kidney biomarkers (SC and BUN). Such increase in kidney function biomarkers after oral administration *Nigella sativa* is correlated with (26). Pretreatment of acetaminophen-intoxicated rats with *Nigella sativa* oil normalized the levels of urea and creatinine. *Nigella sativa* is composed of about 100 pharmacologic active ingredients, one of the most important of which is thymoquinone TQ, the main constituent of *Nigella sativa* oil, ameliorated the severity of ifosfamide-induced renal damage (27). Thymoquinone the main compound of the essential oil inhibit non enzymatic lipid peroxidation in liposomes (28). It was shown that thymoquinone has antioxidant effect. Oxidative stress could exaggerate kidney toxicity induced by acetaminophen. The other ingredients of *Nigella sativa* can exert beneficial effects on the renal toxicity induced by acetaminophen (29). *Nigella sativa* acts in the kidney as a potent scavenger of free radicals to prevent or inhibit the toxic effects of acetaminophen on kidney function. Administration of *Nigella sativa* oil was effective in ameliorating the biochemical and physiological indexes of nephrotoxicity during the administration of the nephrotoxic drug acetaminophen.

In conclusion, it is plausible to suggest that Acetaminophen-induced a case of renal dysfunction, through an increase in serum creatinine and blood urea nitrogen concentration, but administration of *Nigella sativa* oil at this dose exerted renal protective action against acetaminophen induce renal dysfunction.

References


الدور الوقائي لزيت الحبة السوداء على التلف الكلوي المستحدث بالإسيتامينوفين في ذكور الجرذان

زيدية محمد حمد
كلية التربية الأساسية، جامعة واسط، العراق
E-mail: Zena_alshammary@yahoo.com

الخلاصة
الاسيتامينوفين الذي يدعى الباراسيتامول أيضاً، وعادة ما يستعمل كمسكن للآلام وخفض الحرارة لكن الجرعات العالية تسبب تلف الكبد والكلوي في الإنسان والحيوانات. زيت الحبة السوداء له خواص مضادة للأكسدة. استعمل 03 من ذكور الجرذان وقسمت عشوائياً على ثلاثة مجاميع متساوية: أعطيت المجموعة الأولى الماء العادي وعدت كمجموعة سيطرة، أما المجموعة الثانية فقد جرعت محلول الاسيتامينوفين وجرعة مقدارها 150 ملغم/كغم من وزن الجسم، أما المجموعة الثالثة فقد أعطيت إضافةً عن الاسيتامينوفين زيت الحبة السوداء بجرعة 1 مل/كغم من وزن الجسم لمدة 42 يوماً. جمعت عينات الدم في الأيام 21 و 42 من التجربة لدراسة المؤشرات الآتية: تركيز الكرياتنين ونتروجين يوريا الدم. أظهرت النتائج حدوث زيادة معنوية في تركيز الكرياتنين ونتروجين يوريا الدم لمجموعة الاسيتامينوفين بالمقارنة مع مجموعة السيطرة. من جهة أخرى أظهرت المجموعة المعاملة بزيت الحبة السوداء فضلاً عن الاسيتامينوفين وجود انخفاض معنوي في تركيز الكرياتنين ونتروجين يوريا الدم، نستنتج من الدراسة أن الاسيتامينوفين أحدث إجهاد تاكسدي وتغير في بعض المعايير الحيوية المتعلقة بأمراض الكلية. ويمارس زيت الحبة السوداء التأثير الوقائي ضد أضرار الإسيتامينوفين.

الكلمات المفتاحية: زيت الحبة السوداء، التلف الكلوي، الاسيتامينوفين، الجرذان.